RESUMO
Here, we demonstrate a facile and scalable preparation via sol-gel chemistry of hybrid polyurea gels containing various amounts of a phosphorescent inorganic octahedral molybdenum cluster-based ternary salt, namely Cs2Mo6Br14. The influence of the Cs2Mo6Br14 content (1-10 wt%) on the polyurea matrix and its physical properties are studied in depth by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray fluorescence microanalysis (µ-XRF). Regardless of the amount of cluster loaded into the polyurea, the integrity of these species was preserved and their dispersion is homogeneous as shown by µ-XRF mapping. Spectroscopic-structural analyses reveal a significant increase of the chain mobility (glass transition temperature Tg) from -65 °C to -55 °C after the incorporation of Cs2Mo6Br14 (DSC analyses). The FTIR studies show that the homogeneity of the dispersion is ensured by supramolecular interactions between the ether-type oxygen atoms of the PEO chains and the cluster compound. Photoluminescence studies show that the metal cluster emission properties are well retained within the host matrix whatever the loaded content. Such a combination of materials demonstrates the feasibility to fabricate a rubber NIR-emitting device. Moreover, the loaded polyurea is also able to produce reactive oxygen species (ROS) upon irradiation in the UV-A region, opening new perspectives as versatile membranes in the field of photodynamic therapy.
RESUMO
There continues to be a need to develop controlled-release systems loaded with multiple drugs with distinct pharmacological activities, such as anti-inflammatory and anticancer effects, which are able to provide the desired release of each drug, as a function of time. To this end, an elegant strategy was developed for the incorporation, in a one-step process, of the anti-inflammatory drug naproxen (NAP) and the anticancer drug 5-fluorouracil (5FU) into a ureasil organic-inorganic hybrid matrix. A ureasil-poly(oxyalkylene) (UPEO) matrix was prepared using a sol-gel route to obtain a versatile dual-drug delivery system. Small-angle X-ray scattering (SAXS) measurements and Fourier transform infrared spectroscopy (FTIR) demonstrated that the UPEO network is preserved upon loading with the two drugs NAP and 5FU. There was excellent agreement between the macroscopic swelling behavior (water uptake) and surface wettability (determined using contact angle measurements), with this behavior being closely correlated with the release profiles and playing an important role in the sustained delivery of both drugs from the hybrid matrix. The amounts of both drugs released simultaneously could be finely controlled by adjusting the pH of the aqueous medium, with the release presenting stimulus-responsive behavior. In an aqueous PBS medium, the dual-UPEO-release system presented excellent potential as a vehicle for the release of the water-soluble 5FU and water-insoluble NAP drugs, at identical rates, using a single carrier. This novel and adjustable dual-drug delivery UPEO system is a promising hybrid material carrier with the ability to simultaneously incorporate a wide range of therapeutic agents for the treatment of various diseases, including cancers.