Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 155(1): 35-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36260271

RESUMO

Photosystem I and II (PSI and PSII) work together to convert solar energy into chemical energy. Whilst a lot of research has been done to unravel variability of PSII fluorescence in response to biotic and abiotic factors, the contribution of PSI to in vivo fluorescence measurements has often been neglected or considered to be constant. Furthermore, little is known about how the absorption and emission properties of PSI from different plant species differ. In this study, we have isolated PSI from five plant species and compared their characteristics using a combination of optical and biochemical techniques. Differences have been identified in the fluorescence emission spectra and at the protein level, whereas the absorption spectra were virtually the same in all cases. In addition, the emission spectrum of PSI depends on temperature over a physiologically relevant range from 280 to 298 K. Combined, our data show a critical comparison of the absorption and emission properties of PSI from various plant species.


Assuntos
Magnoliopsida , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo , Espectrometria de Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
2.
Sci Adv ; 8(23): eabo0875, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687685

RESUMO

Filamentous plant pathogens apply mechanical forces to pierce their hosts surface and penetrate its tissues. Devastating Phytophthora pathogens harness a specialized form of invasive tip growth to slice through the plant surface, wielding their hypha as a microscopic knife. Slicing requires a sharp hyphal tip that is not blunted at the site of the mechanical interaction. How tip shape is controlled, however, is unknown. We uncover an actin-based mechanostat in Phytophthora infestans that controls tip sharpness during penetration. Mechanical stimulation of the hypha leads to the emergence of an aster-like actin configuration, which shows fast, local, and quantitative feedback to the local stress. We evidence that this functions as an adaptive mechanical scaffold that sharpens the invasive weapon and prevents it from blunting. The hyphal tip mechanostat enables the efficient conversion of turgor into localized invasive pressures that are required to achieve host penetration.

3.
Cell Surf ; 8: 100071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35059532

RESUMO

Phytophthora infestans, causal agent of late blight in potato and tomato, remains challenging to control. Unravelling its biomechanics of host invasion, and its response to mechanical and chemical stress, could provide new handles to combat this devastating pathogen. Here we introduce two fluorescent molecular sensors, CWP-BDP and NR12S, that reveal the micromechanical response of the cell wall-plasma membrane continuum in P. infestans during invasive growth and upon chemical treatment. When visualized by live-cell imaging, CWP-BDP reports changes in cell wall (CW) porosity while NR12S reports variations in chemical polarity and lipid order in the plasma membrane (PM). During invasive growth, mechanical interactions between the pathogen and a surface reveal clear and localized changes in the structure of the CW. Moreover, the molecular sensors can reveal the effect of chemical treatment to CW and/or PM, thereby revealing the site-of-action of crop protection agents. This mechano-chemical imaging strategy resolves, non-invasively and with high spatio-temporal resolution, how the CW-PM continuum adapts and responds to abiotic stress, and provides information on the dynamics and location of cellular stress responses for which, to date, no other methods are available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...