Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rep (N Y) ; 4(2): 100155, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38590949

RESUMO

Time-resolved fluorescence spectroscopy plays a crucial role when studying dynamic properties of complex photochemical systems. Nevertheless, the analysis of measured time decays and the extraction of exponential lifetimes often requires either the experimental assessment or the modeling of the instrument response function (IRF). However, the intrinsic nature of the IRF in the measurement process, which may vary across measurements due to chemical and instrumental factors, jeopardizes the results obtained by reconvolution approaches. In this paper, we introduce a novel methodology, called blind instrument response function identification (BIRFI), which enables the direct estimation of the IRF from the collected data. It capitalizes on the properties of single exponential signals to transform a deconvolution problem into a well-posed system identification problem. To delve into the specifics, we provide a step-by-step description of the BIRFI method and a protocol for its application to fluorescence decays. The performance of BIRFI is evaluated using simulated and time-correlated single-photon counting data. Our results demonstrate that the BIRFI methodology allows an accurate recovery of the IRF, yielding comparable or even superior results compared with those obtained with experimental IRFs when they are used for reconvolution by parametric model fitting.

2.
Anal Chim Acta ; 1280: 341884, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858563

RESUMO

Digital images are commonly used to monitor processes that are based on colour changes due to their simplicity and easy capture. Colour information in these images can be analysed objectively and accurately using colour histograms. One such process is olive ripening, which is characterized by changes in chemical composition, sensory properties and can be followed by changes in physical appearance, mainly colour. The reference method to quantify the ripeness of olives is the Maturity Index (MI), which is determined by trained experts assigning individual olives into a colour scale through visual inspection. Instead, this study proposes a methodology based on Chemometrics Assisted Colour Histogram-based Analytical Systems (CACHAS) to automatically assess the MI of olives based on R, G, and B colour histograms derived from digital images. The methodology was shown to be easily transferable for routine analysis and capable of controlling the ripening of olives. The study also confirms the high potential of digital images to understand the ripening process of olives (and potentially other fruits) and to predict the MI with satisfactory accuracy, providing an objective and reproducible alternative to visual inspection of trained experts.


Assuntos
Olea , Olea/química , Azeite de Oliva/análise , Frutas/química
3.
Anal Chim Acta ; 1273: 341545, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423671

RESUMO

The unmixing of multiexponential decay signals into monoexponential components using soft modelling approaches is a challenging task due to the strong correlation and complete window overlap of the profiles. To solve this problem, slicing methodologies, such as PowerSlicing, tensorize the original data matrix into a three-way data array that can be decomposed based on trilinear models providing unique solutions. Satisfactory results have been reported for different types of data, e.g., nuclear magnetic resonance or time-resolved fluorescence spectra. However, when decay signals are described by only a few sampling (time) points, a significant degradation of the results can be observed in terms of accuracy and precision of the recovered profiles. In this work, we propose a methodology called Kernelizing that provides a more efficient way to tensorize data matrices of multiexponential decays. Kernelizing relies on the invariance of exponential decays, i.e., when convolving a monoexponential decaying function with any positive function of finite width (hereafter called "kernel"), the shape of the decay (determined by the characteristic decay constant) remains unchanged and only the preexponential factor varies. The way preexponential factors are affected across the sample and time modes is linear, and it only depends on the kernel used. Thus, using kernels of different shapes, a set of convolved curves can be obtained for every sample, and a three-way data array generated, for which the modes are sample, time and kernelizing effect. This three-way array can be afterwards analyzed by a trilinear decomposition method, such as PARAFAC-ALS, to resolve the underlying monoexponential profiles. To validate this new approach and assess its performance, we applied Kernelizing to simulated datasets, real time-resolved fluorescence spectra collected on mixtures of fluorophores and fluorescence-lifetime imaging microscopy data. When the measured multiexponential decays feature few sampling points (down to fifteen), more accurate trilinear model estimates are obtained than when using slicing methodologies.

4.
Anal Chim Acta ; 1192: 339368, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057937

RESUMO

Laser-induced breakdown spectroscopy (LIBS) imaging is an innovative technique that associates the valuable atomic, ionic and molecular emission signals of the parent spectroscopy with spatial information. LIBS works using a powerful pulse laser as excitation source, to generate a plasma exhibiting emission lines of atoms, ions and molecules present in the ablated matter. The advantages of LIBS imaging are potential high sensitivity (in the order of ppm), easy sample preparation, fast acquisition rate (up to 1 kHz) and µm scale spatial resolution (weight of the ablated material in the order of ng). Despite these positive aspects, LIBS imaging easily provides datasets consisting of several million spectra, each containing several thousand spectral channels. Under these conditions, the current chemometric analyses of the raw data are still possible, but require too high computing resources. Therefore, the aim of this work is to propose a data compression strategy oriented to keep the most relevant spectral channel and pixel information to facilitate, fast and reliable signal unmixing for an exhaustive exploration of complex samples. This strategy will apply not only to the context of LIBS image analysis, but to the fusion of LIBS with other imaging technologies, a scenario where the data compression step becomes even more mandatory. The data fusion strategy will be applied to the analysis of a heterogeneous kyanite mineral sample containing several trace elements by LIBS imaging associated with plasma induced luminescence (PIL) imaging, these two signals being acquired simultaneously by the same microscope. The association of compression and spectral data fusion will allow extracting the compounds in the mineral sample associated with a fused LIBS/PIL fingerprint. This LIBS/PIL association will be essential to interpret the PIL spectral information, which is nowadays very complex due to the natural overlapped signals provided by this technique.


Assuntos
Quimiometria , Luminescência , Lasers , Minerais , Análise Espectral
5.
Anal Chem ; 93(37): 12504-12513, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34494422

RESUMO

Time-resolved fluorescence spectroscopy (TRFS), i.e., measurement of fluorescence decay curves for different excitation and/or emission wavelengths, provides specific and sensitive local information on molecules and on their environment. However, TRFS relies on multiexponential data fitting to derive fluorescence lifetimes from the measured decay curves and the time resolution of the technique is limited by the instrumental response function (IRF). We propose here a multivariate curve resolution (MCR) approach based on data slicing to perform tailored and fit-free analysis of multiexponential fluorescence decay curves. MCR slicing, taking as a basic framework the multivariate curve resolution-alternating least-squares (MCR-ALS) soft-modeling algorithm, relies on a hybrid bilinear/trilinear data decomposition. A key feature of the method is that it enables the recovery of individual components characterized by decay profiles that are only partially describable by monoexponential functions. For TRFS data, not only pure multiexponential tail information but also shorter time delay information can be decomposed, where the signal deviates from the ideal exponential behavior due to the limited time resolution. The accuracy of the proposed approach is validated by analyzing mixtures of three commercial dyes and characterizing the mixture composition, lifetimes, and associated contributions, even in situations where only ternary mixture samples are available. MCR slicing is also applied to the analysis of TRFS data obtained on a photoswitchable fluorescent protein (rsEGFP2). Three fluorescence lifetimes are extracted, along with the profile of the IRF, highlighting that decomposition of complex systems, for which individual isomers are characterized by different exponential decays, can also be achieved.


Assuntos
Algoritmos , Análise dos Mínimos Quadrados , Análise Multivariada , Espectrometria de Fluorescência
6.
Anal Chim Acta ; 1180: 338852, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538329

RESUMO

Controlling blending processes of solid material using advanced real-time sensing technologies tools is crucial to guarantee the quality attributes of manufactured products from diverse industries. The use of process analytical technology (PAT) tools based on chemical imaging systems are useful to assess heterogeneity information during mixing processes. Recently, a powerful procedure for heterogeneity assessment based on the combination of off-line acquired chemical images and variographic analysis has been proposed to provide specific heterogeneity indices related to global and distributional heterogeneity. This work proposes a novel PAT tool combining in situ chemical imaging and variogram-derived quantitative heterogeneity indices for the real-time monitoring of blending processes. The proposed method, so called sliding window variographic image analysis (SWiVIA), derives heterogeneity indices in real-time associated with a sliding image window that moves continuously until the full blending time interval is covered. The SWiVIA method is thoroughly assessed paying attention at the effect of relevant factors for continuous blending monitoring and heterogeneity description, such as the scale of scrutiny needed for heterogeneity definition or the blending period defined to set the sliding image window. SWiVIA is tested on blending runs of pharmaceutical and food products monitored with an in situ near-infrared chemical imaging system. The results obtained help to detect abnormal mixing phenomena and can be the basis to establish blending process control indicators in the future. SWiVIA is adapted to study blending behaviors of the bulk product or compound-specific blending evolutions.


Assuntos
Imageamento Hiperespectral , Tecnologia Farmacêutica , Processamento de Imagem Assistida por Computador
7.
Sci Rep ; 11(1): 18665, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545129

RESUMO

Hyperspectral imaging (HSI) is a useful non-invasive technique that offers spatial and chemical information of samples. Often, different HSI techniques are used to obtain complementary information from the sample by combining different image modalities (Image Fusion). However, issues related to the different spatial resolution, sample orientation or area scanned among platforms need to be properly addressed. Unmixing methods are helpful to analyze and interpret the information of HSI related to each of the components contributing to the signal. Among those, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) offers very suitable features for image fusion, since it can easily cope with multiset structures formed by blocks of images coming from different samples and platforms and allows the use of optional and diverse constraints to adapt to the specific features of each HSI employed. In this work, a case study based on the investigation of cross-sections from rice leaves by Raman, synchrotron infrared and fluorescence imaging techniques is presented. HSI of these three different techniques are fused for the first time in a single data structure and analyzed by MCR-ALS. This example is challenging in nature and is particularly suitable to describe clearly the necessary steps required to perform unmixing in an image fusion context. Although this protocol is presented and applied to a study of vegetal tissues, it can be generally used in many other samples and combinations of imaging platforms.

8.
Anal Chim Acta ; 1145: 59-78, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33453882

RESUMO

Multivariate Curve Resolution (MCR) covers a wide span of algorithms designed to tackle the mixture analysis problem by expressing the original data through a bilinear model of pure component meaningful contributions. Since the seminal work by Lawton and Sylvestre in 1971, MCR methods are dynamically evolving to adapt to a wealth of diverse and demanding scientific scenarios. To do so, essential concepts, such as basic constraints, have been revisited and new modeling tasks, mathematical properties and domain-specific information have been incorporated; the initial underlying bilinear model has evolved into a flexible framework where hybrid bilinear/multilinear models can coexist, the regular data structures have undergone a turn of the screw and incomplete multisets and matrix and tensor combinations can be now analyzed. Back to the fundamentals, the theoretical core of the MCR methodology is deeply understood due to the thorough studies about the ambiguity phenomenon. The adaptation of the method to new analytical measurements and scientific domains is continuous. At this point of the story, MCR can be considered a mature yet lively methodology, where many steps forward can still be taken.

9.
Talanta ; 224: 121735, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379003

RESUMO

Recent advances in the latest generation of MEMS (micro-electro-mechanical system) Fabry-Pérot interferometers (FPI) for near infrared (NIR) wavelengths has led to the development of ultra-fast and low cost NIR sensors with potential to be used by the process industry. One of these miniaturised sensors operating from 1350 to 1650 nm, was integrated into a software platform to monitor a multiphase solid-gas-liquid process, for the production of saturated polyester resins. Twelve batches were run in a 2 L reactor mimicking industrial conditions (24 h process, with temperatures ranging from 220 to 240 °C), using an immersion NIR transmission probe. Because of the multiphase nature of the reaction, strong interference produced by process disturbances such as temperature variations and the presence of solid particles and bubbles in the online spectra required robust pre-processing algorithms and a good long-term stability of the probe. These allowed partial least squares (PLS) regression models to be built for the key analytical parameters acid number and viscosity. In parallel, spectra were also used to build an end-point detection model based on principal component analysis (PCA) for multivariate statistical process control (MSPC). The novel MEMS-FPI sensor combined with robust chemometric analysis proved to be a suitable and affordable alternative for online process monitoring, contributing to sustainability in the process industry.

10.
Anal Chem ; 92(24): 15880-15889, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237728

RESUMO

Heterogeneity characterization is crucial to define the quality of end products and to describe the evolution of processes that involve blending of compounds. The heterogeneity concept describes both the diversity of physicochemical characteristics of sample fragments (constitutional heterogeneity) and the diversity of spatial distribution of the materials/compounds in the sample (distributional heterogeneity, DH). Hyperspectral images (HSIs) are unique analytical measurements that provide physicochemical and spatial information on samples and, hence, are ideal to perform heterogeneity studies. This work proposes a new methodology combining HSI and variographic analysis to obtain a good qualitative and quantitative description of global heterogeneity (GH) and DH for samples and blending processes. An initial step of image unmixing provides a set of pure distribution maps of the blending constituents as a function of time that allows a qualitative visualization of the heterogeneity variation along the blending process. These maps are used as seeding information for a subsequent variographic analysis that furnishes the newly designed quantitative global heterogeneity index (GHI) and distributional uniformity index (DUI), related to GH and DH indices, respectively. GHI and DUI indices can be described at a sample level and per component within the sample. GHI and DUI curves of blending processes are easily interpretable and adaptable for blending monitoring and control and provide invaluable information to understand the sources of the abnormal blending behavior.

11.
Anal Chem ; 92(14): 9591-9602, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32517468

RESUMO

Image fusion is often oriented to solve differences in spatial scale and orientation among different spectroscopic platforms. However, an additional problem arises when the nature of the spectroscopic information differs in dimensionality as well. Indeed, most imaging systems, e.g., Raman, IR, MS, etc., allow acquisition of 3D images, with a linear spectrum per pixel, but new platforms have emerged, such as the recent excitation-emission fluorescence imaging platforms that provide 4D images, with a 2D spectral landscape per pixel. A proper 3D/4D image fusion needs to take into account the difference in the dimension of the spectral information and in the underlying models of both measurements (bilinear for 3D images and trilinear for 4D images). This work solves this image fusion problem through a new dedicated variant of the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm for multiset analysis based on the incorporation of a hybrid bilinear/trilinear model that can handle the image fused structure preserving the natural behavior of the 3D and 4D imaging techniques coupled. The example is illustrated on the fusion of real 3D Raman and 4D fluorescence images recorded on cross sections of rice leaf samples.

12.
Pharm Res ; 37(5): 84, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32318827

RESUMO

PURPOSE: The current trend for continuous drug product manufacturing requires new, affordable process analytical techniques (PAT) to ensure control of processing. This work evaluates whether property models based on spectral data from recent Fabry-Pérot Interferometer based NIR sensors can generate a high-resolution moisture signal suitable for process control. METHODS: Spectral data and offline moisture content were recorded for 14 fluid bed dryer batches of pharmaceutical granules. A PLS moisture model was constructed resulting in a high resolution moisture signal, used to demonstrate (i) endpoint determination and (ii) evaluation of mass transfer performance. RESULTS: The sensors appear robust with respect to vibration and ambient temperature changes, and the accuracy of water content predictions (±13 % ) is similar to those reported for high specification NIR sensors. Fusion of temperature and moisture content signal allowed monitoring of water transport rates in the fluidised bed and highlighted the importance water transport within the solid phase at low moisture levels. The NIR data was also successfully used with PCA-based MSPC models for endpoint detection. CONCLUSIONS: The spectral quality of the small form factor NIR sensor and its robustness is clearly sufficient for the construction and application of PLS models as well as PCA-based MSPC moisture models. The resulting high resolution moisture content signal was successfully used for endpoint detection and monitoring the mass transfer rate.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/economia , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Tecnologia Farmacêutica/métodos , Composição de Medicamentos , Sistemas Microeletromecânicos , Pós/química , Pressão , Temperatura , Água
13.
Anal Bioanal Chem ; 412(9): 2151-2163, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960081

RESUMO

Process analytical technologies (PAT) applied to process monitoring and control generally provide multiple outputs that can come from different sensors or from different model outputs generated from a single multivariate sensor. This paper provides a contribution to current data fusion strategies for the combination of sensor and/or model outputs in the development of multivariate statistical process control (MSPC) models. Data fusion is explored through three real process examples combining output from multivariate models coming from the same sensor uniquely (in the near-infrared (NIR)-based end point detection of a two-stage polyester production process) or the combination of these outputs with other process variable sensors (using NIR-based model outputs and temperature values in the end point detection of a fluidized bed drying process and in the on-line control of a distillation process). The three examples studied show clearly the flexibility in the choice of model outputs (e.g. key properties prediction by multivariate calibration, process profiles issued from a multivariate resolution method) and the benefit of using MSPC models based on fused information including model outputs towards those based on raw single sensor outputs for both process control and diagnostic and interpretation of abnormal process situations. The data fusion strategy proposed is of general applicability for any analytical or bioanalytical process that produces several sensor and/or model outputs. Graphical abstract.

14.
Nucleic Acids Res ; 47(13): 6590-6605, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31199873

RESUMO

Recently, the presence of i-motif structures at C-rich sequences in human cells and their regulatory functions have been demonstrated. Despite numerous steady-state studies on i-motif at neutral and slightly acidic pH, the number and nature of conformation of this biological structure are still controversial. In this work, the fluorescence lifetime of labelled molecular beacon i-motif-forming DNA sequences at different pH values is studied. The influence of the nature of bases at the lateral loops and the presence of a Watson-Crick-stabilized hairpin are studied by means of time-correlated single-photon counting technique. This allows characterizing the existence of several conformers for which the fluorophore has lifetimes ranging from picosecond to nanosecond. The information on the existence of different i-motif structures at different pH values has been obtained by the combination of classical global decay fitting of fluorescence traces, which provides lifetimes associated with the events defined by the decay of each sequence and multivariate analysis, such as principal component analysis or multivariate curve resolution based on alternating least squares. Multivariate analysis, which is seldom used for this kind of data, was crucial to explore similarities and differences of behaviour amongst the different DNA sequences and to model the presence and identity of the conformations involved in the pH range of interest. The results point that, for i-motif, the intrachain contact formation and its dissociation show lifetimes ten times faster than for the open form of DNA sequences. They also highlight that the presence of more than one i-motif species for certain DNA sequences according to the length of the sequence and the composition of the bases in the lateral loop.


Assuntos
DNA/química , Análise Multivariada , Conformação de Ácido Nucleico , Espectrometria de Fluorescência/métodos , Composição de Bases , Pareamento de Bases , Citosina/química , Concentração de Íons de Hidrogênio , Análise de Componente Principal
16.
Talanta ; 194: 390-398, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609549

RESUMO

The use of hyperspectral imaging techniques in biological studies has increased in the recent years. Hyperspectral images (HSI) provide chemical information and preserve the morphology and original structure of heterogeneous biological samples, which can be potentially useful in environmental -omics studies when effects due to several factors, e.g., contaminant exposure, phenotype,…, at a specific tissue level need to be investigated. Yet, no available strategies exist to exploit adequately this kind of information. This work offers a novel chemometric strategy to pass from the raw image information to useful knowledge in terms of statistical assessment of the multifactor effects of interest in -omic studies. To do so, unmixing of the hyperspectral image measurement is carried out to provide tissue-specific information. Afterwards, several specific ANOVA-Simultaneous Component Analysis (ASCA) models are generated to properly assess and interpret the diverse effect of the factors of interest on the spectral fingerprints of the different tissues characterized. The unmixing step is performed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) on multisets of biological images related to each studied condition and provides reliable HSI spectral signatures and related image maps for each specific tissue in the regions imaged. The variability associated with these signatures within a population is obtained through an MCR-based resampling step on representative pixel subsets of the images analyzed. All spectral fingerprints obtained for a particular tissue in the different conditions studied are used to obtain the related ASCA model that will help to assess the significance of the factors studied on the tissue and, if relevant, to describe the associated fingerprint modifications. The potential of the approach is assessed in a real case of study linked to the investigation of the effect of exposure time to chlorpyrifos-oxon (CPO) on ocular tissues of different phenotypes of zebrafish larvae from Raman HSI of eye cryosections. The study allowed the characterization of melanin, crystalline and internal eye tissue and the phenotype, exposure time and the interaction of the two factors were found to be significant in the changes found in all kind of tissues. Factor-related changes in the spectral fingerprint were described and interpreted per each kind of tissue characterized.


Assuntos
Biologia Computacional/métodos , Meio Ambiente , Imagem Molecular , Animais , Processamento de Imagem Assistida por Computador , Análise dos Mínimos Quadrados , Análise Multivariada , Especificidade de Órgãos , Fenótipo , Peixe-Zebra/embriologia
17.
Front Plant Sci ; 10: 1701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117328

RESUMO

Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm-1 and an increase in a peak at approximately 1640 cm-1. There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.

18.
Phys Chem Chem Phys ; 20(29): 19635-19646, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30010680

RESUMO

The i-motif is a DNA structure formed by cytosine-rich sequences, very relevant from a biochemical point of view and potentially useful in nanotechnology as pH-sensitive nanodevices or nanomotors. To provide a different view on the structural changes and dynamics of direct excitation processes involving i-motif structures, the use of rapid-scan FTIR spectroscopy is proposed. Hybrid hard- and soft-modelling based on the Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithm has been used for the resolution of rapid-scan FTIR spectra and the interpretation of the photochemically induced time-dependent conformational changes of i-motif structures. The hybrid hard- and soft-modelling version of MCR-ALS (HS-MCR), which allows the introduction of kinetic models to describe process behavior, provides also rate constants associated with the transitions modeled. The results show that UV irradiation does not produce degradation of the studied sequences but induces the formation of photodimers. The presence of these affect much more the stability of i-motif structures formed by short sequences than that of those formed by longer sequences containing additional structural stabilizing elements, such as hairpins.


Assuntos
DNA/química , Raios Ultravioleta , Algoritmos , Dimerização , Concentração de Íons de Hidrogênio , Análise dos Mínimos Quadrados , Modelos Moleculares , Análise Multivariada , Nanotecnologia , Conformação de Ácido Nucleico , Processos Fotoquímicos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Plant Methods ; 14: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997681

RESUMO

BACKGROUND: Plant cell walls are nanocomposites based on cellulose microfibrils embedded in a matrix of polysaccharides and aromatic polymers. They are optimized for different functions (e.g. mechanical stability) by changing cell form, cell wall thickness and composition. To reveal the composition of plant tissues in a non-destructive way on the microscale, Raman imaging has become an important tool. Thousands of Raman spectra are acquired, each one being a spatially resolved molecular fingerprint of the plant cell wall. Nevertheless, due to the multicomponent nature of plant cell walls, many bands are overlapping and classical band integration approaches often not suitable for imaging. Multivariate data analysing approaches have a high potential as the whole wavenumber region of all thousands of spectra is analysed at once. RESULTS: Three multivariate unmixing algorithms, vertex component analysis, non-negative matrix factorization and multivariate curve resolution-alternating least squares were applied to find the purest components within datasets acquired from micro-sections of spruce wood and Arabidopsis. With all three approaches different cell wall layers (including tiny S1 and S3 with 0.09-0.14 µm thickness) and cell contents were distinguished and endmember spectra with a good signal to noise ratio extracted. Baseline correction influences the results obtained in all methods as well as the way in which algorithm extracts components, i.e. prioritizing the extraction of positive endmembers by sequential orthogonal projections in VCA or performing a simultaneous extraction of non-negative components aiming at explaining the maximum variance in NMF and MCR-ALS. Other constraints applied (e.g. closure in VCA) or a previous principal component analysis filtering step in MCR-ALS also contribute to the differences obtained. CONCLUSIONS: VCA is recommended as a good preliminary approach, since it is fast, does not require setting many input parameters and the endmember spectra result in good approximations of the raw data. Yet the endmember spectra are more correlated and mixed than those retrieved by NMF and MCR-ALS methods. The latter two give the best model statistics (with lower lack of fit in the models), but care has to be taken about overestimating the rank as it can lead to artificial shapes due to peak splitting or inverted bands.

20.
Anal Chem ; 90(11): 6757-6765, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29697967

RESUMO

Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...