Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 40(2): 320-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520738

RESUMO

Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.


Assuntos
Agricultura/métodos , Chuva , Solo , Movimentos da Água , Animais , Fertilizantes , Modelos Biológicos , Poluentes da Água
2.
J Environ Qual ; 39(1): 375-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20048325

RESUMO

To prevent the 7 to 11 million metric tons of waste foundry sand (WFS) produced annually in the USA from entering landfills, current research is focused on the reuse of WFSs as soil amendments. The effects of different WFS-containing amendments on turfgrass growth and nutrient content were tested by planting perennial ryegrass (Lolium perenne L.) and tall fescue (Schedonorus phoenix (Scop.) Holub) in different blends containing WFS. Blends of WFS were created with compost or acid-washed sand (AWS) at varying percent by volume with WFS or by amendment with gypsum (9.6 g gypsum kg(-1) WFS). Measurements of soil strength, shoot and root dry weight, plant surface coverage, and micronutrients (Al, Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca, Mg) were performed for each blend and compared with pure WFS and with a commercial potting media control. Results showed that strength was not a factor for any of the parameters studied, but the K/Na base saturation ratio of WFS:compost mixes was highly correlated with total shoot dry weight for perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). This was further substantiated because total shoot dry weight was also correlated with shoot K/Na concentration of perennial ryegrass (r = 0.99) and tall fescue (r = 0.95). A compost blend containing 40% WFS was determined to be the optimal amendment for the reuse of WFS because it incorporated the greatest possible amount of WFS without major reduction in turfgrass growth.


Assuntos
Sulfato de Cálcio/química , Resíduos Industriais/efeitos adversos , Poa/efeitos dos fármacos , Eliminação de Resíduos/métodos , Dióxido de Silício/química , Solo/análise , Monitoramento Ambiental , Metalurgia , Raízes de Plantas , Brotos de Planta , Poa/crescimento & desenvolvimento , Poluentes do Solo/efeitos adversos , Poluentes do Solo/química
3.
J Environ Qual ; 37(6): 2332-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18948487

RESUMO

To avoid increasing costs of landfill disposal, it has become increasingly important for U.S. foundries to identify beneficial reuses for the 8 to 12 million tons of waste foundry sand (WFS) generated annually. A major drawback to the reuse of some WFSs as a soil amendment is their high soil strength, under dry conditions, where root growth may be limited. Fifteen WFSs were analyzed for strength to rupture using lab-formed clods, exchangeable cations (Na, Mg, Ca), metal oxide concentration (Fe, Mn, Al, Si), cation exchange capacity (CEC), and % clay. Several WFS samples from gray iron foundries demonstrated high strength to rupture values (> 1.5 MPa), and could potentially restrict root growth in amended soils. The percentage of Na-bentonite exhibited a positive correlation (R(2) = 0.84) with strength to rupture values. When WFSs containing more Na-bentonite were saturated with 1 mol L(-1) Ca ions, strength values decreased by approximately 70%. Waste foundry sands containing less Na-bentonite were saturated with 1 mol L(-1) Na ions and exhibited a threefold increase in strength. Additions of gypsum (up to 9.6 g kg(-1) sand) to high strength waste foundry sands also caused decreases in strength. These results indicate that high strength WFSs have properties similar to hardsetting soils which are caused by high Na(+) clay content and can be ameliorated by the addition of Ca(2+).


Assuntos
Conservação dos Recursos Naturais/métodos , Resíduos Industriais , Dióxido de Silício , Solo/análise , Microscopia Eletrônica de Varredura , Eliminação de Resíduos/métodos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA