Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 13: 1064008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644209

RESUMO

Multiple sclerosis (MS) is a chronic debilitating neurological condition with a wide range of phenotype variability. A complex interplay of genetic and environmental factors contributes to disease onset and progression in MS patients. Vitamin D deficiency is a known susceptibility factor for MS, however the underlying mechanism of vitamin D-gene interactions in MS etiology is still poorly understood. Vitamin D receptor super-enhancers (VSEs) are enriched in MS risk variants and may modulate these environment-gene interactions. mRNA expression in total of 64 patients with contrasting MS severity was quantified in select genes. First, RNA-seq was performed on a discovery cohort (10 mild, 10 severe MS phenotype) and ten genes regulated by VSEs that have been linked to MS risk were analyzed. Four candidates showed a significant positive association (GRINA, PLEC, PARP10, and LRG1) in the discovery cohort and were then quantified using digital droplet PCR (ddPCR) in a validation cohort (33 mild, 11 severe MS phenotype). A significant differential expression persisted in the validation cohort for three of the VSE-MS genes: GRINA (p = 0.0138), LRG1 (p = 0.0157), and PLEC (p = 0.0391). In summary, genes regulated by VSE regions that contain known MS risk variants were shown to have differential expression based on disease severity (p<0.05). The findings implicate a role for vitamin D super-enhancers in modulating disease activity. In addition, expression levels may have some utility as prognostic biomarkers in the future.

2.
Cytokine ; 115: 32-44, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623804

RESUMO

BACKGROUND: Osteoarthritis (OA) is one of the leading causes of disability worldwide. Previous history of knee injury is a significant risk factor for OA. It has been established that low-level chronic inflammation plays a pivotal role in the onset and pathogenesis of OA. The primary aim of this research was to determine if a history of knee joint injury is associated with systemic inflammation. A secondary aim was to determine if systemic inflammation is related to knee pain and joint structure. METHODS: Differences in serum cytokine association networks, knee joint structural changes (MRI), and self-reported pain (i.e., Knee Injury and Osteoarthritis Outcome Score Pain subscale, KOOSPAIN and Intermittent and Constant Osteoarthritis Pain score, ICOAP) between individuals who had sustained a youth (aged 15-26 years) sport-related knee injury 3-10 years previously and age- and sex-matched controls were examined. Proteins of interest were also examined in an OA rat model. RESULTS: Cytokine association networks were found to differ significantly between study groups, yet no significant associations were found between networks and KOOSPAIN or MRI-defined OA. A group of cytokines (MCP1/CCL2, CCL22 and TNFα) were differentially associated with other cytokines between study groups. In a pre-clinical rat OA model, serum CCL22 levels were associated with pain (r = 0.255, p = 0.045) and structural changes to the cartilage. CCL22 expression was also observed in human OA cartilage and furthermore, CCL22 induced apoptosis of isolated human chondrocytes. DISCUSSION: These results suggest that CCL22 may be an early factor in the onset/pathogenic process of cartilage degeneration and/or related to pain OA.


Assuntos
Apoptose/fisiologia , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Quimiocina CCL22/metabolismo , Condrócitos/metabolismo , Traumatismos do Joelho/metabolismo , Adolescente , Adulto , Animais , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Joelho/patologia , Articulação do Joelho/metabolismo , Masculino , Osteoartrite do Joelho/metabolismo , Dor/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
3.
Cytogenet Genome Res ; 127(2-4): 112-27, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20215734

RESUMO

Gradients of nucleotide bias and substitution rates occur in vertebrate mitochondrial genomes due to the asymmetric nature of the replication process. The evolution of these gradients has previously been studied in detail in primates, but not in other vertebrate groups. From the primate study, the strengths of these gradients are known to evolve in ways that can substantially alter the substitution process, but it is unclear how rapidly they evolve over evolutionary time or how different they may be in different lineages or groups of vertebrates. Given the importance of mitochondrial genomes in phylogenetics and molecular evolutionary research, a better understanding of how asymmetric mitochondrial substitution gradients evolve would contribute key insights into how this gradient evolution may mislead evolutionary inferences, and how it may also be incorporated into new evolutionary models. Most snake mitochondrial genomes have an additional interesting feature, 2 nearly identical control regions, which vary among different species in the extent that they are used as origins of replication. Given the expanded sampling of complete snake genomes currently available, together with 2 additional snakes sequenced in this study, we reexamined gradient strength and CR usage in alethinophidian snakes as well as several lizards that possess dual CRs. Our results suggest that nucleotide substitution gradients (and corresponding nucleotide bias) and CR usage is highly labile over the approximately 200 m.y. of squamate evolution, and demonstrates greater overall variability than previously shown in primates. The evidence for the existence of such gradients, and their ability to evolve rapidly and converge among unrelated species suggests that gradient dynamics could easily mislead phylogenetic and molecular evolutionary inferences, and argues strongly that these dynamics should be incorporated into phylogenetic models.


Assuntos
Replicação do DNA/genética , Elapidae/genética , Evolução Molecular , Genoma Mitocondrial/genética , Filogenia , Animais , Modelos Genéticos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...