Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675751

RESUMO

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

2.
Emerg Microbes Infect ; 12(2): 2251595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649434

RESUMO

Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.


Assuntos
Infecções por HIV , Vacinas , Animais , Macaca mulatta , Vesiculovirus , Regulação para Cima , Antígenos Virais , Complicações Pós-Operatórias , Infecções por HIV/prevenção & controle
3.
Vaccines (Basel) ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243081

RESUMO

Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates.

4.
Emerg Microbes Infect ; 12(1): e2169198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36655944

RESUMO

During a pandemic, effective vaccines are typically in short supply, particularly at onset intervals when the wave is accelerating. We conducted an observational, retrospective analysis of aggregated data from all patients who tested positive for SARS-CoV-2 during the waves caused by the Delta and Omicron variants, stratified based on their known previous infection and vaccination status, throughout the University of Texas Medical Branch (UTMB) network. Next, the immunity statuses within each medical parameter were compared to naïve individuals for the effective decrease of occurrence. Lastly, we conducted studies using mice and pre-pandemic human samples for IgG responses to viral nucleocapsid compared to spike protein toward showing a functional component supportive of the medical data results in relation to the immunity types. During the Delta and Omicron waves, both infection-induced and hybrid immunities were associated with a trend of equal or greater decrease of occurrence than vaccine-induced immunity in hospitalizations, intensive care unit admissions, and deaths in comparison to those without pre-existing immunity, with hybrid immunity often trending with the greatest decrease. Compared to individuals without pre-existing immunity, those vaccinated against SARS-CoV-2 had a significantly reduced incidence of COVID-19, as well as all subsequent medical parameters. Though vaccination best reduces health risks associated with initial infection toward acquiring immunity, our findings suggest infection-induced immunity is as or more effective than vaccination in reducing the severity of reinfection from the Delta or Omicron variants, which should inform public health response at pandemic onset, particularly when triaging towards the allotment of in-demand vaccinations.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Reinfecção , SARS-CoV-2 , Estudos Retrospectivos , Hospitalização
5.
NPJ Vaccines ; 7(1): 172, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543794

RESUMO

In recent years, tattooing technology has shown promising results toward evaluating vaccines in both animal models and humans. However, this technology has some limitations due to variability of experimental evaluations or operator procedures. The current study evaluated a device (intradermal oscillating needle array injection device: IONAID) capable of microinjecting a controlled dose of any aqueous vaccine into the intradermal space. IONAID-mediated administration of a DNA-based vaccine encoding the glycoprotein (GP) from the Ebola virus resulted in superior T- and B-cell responses with IONAID when compared to single intramuscular (IM) or intradermal (ID) injection in mice. Moreover, humoral immune responses, induced after IONAID vaccination, were significantly higher to those obtained with traditional passive DNA tattooing in guinea pigs and rabbits. This device was well tolerated and safe during HIV vaccine delivery in non-human primates (NHPs), while inducing robust immune responses. In summary, this study shows that the IONAID device improves vaccine performance, which could be beneficial to the animal and human health, and importantly, provide a dose-sparing approach (e.g., monkeypox vaccine).

6.
Sci Rep ; 12(1): 11753, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817815

RESUMO

Following the identification of SARS-CoV-2, screening for air travel helped mitigate spread, yet lessons learned from a case study of air travel within Canada display enhanced techniques to better identify infected individuals, informing future responsive screening. While international travel bans limit infectious spread beyond a country's borders, such measures are hardly sustainable economically and infrequently address domestic travel. Here, we describe a case study from Canada, where a diagnostic laboratory at point of travel conducted real-time PCR-based detection of SARS-CoV-2 in support of existing interventions, including clinical and epidemiological questionnaires, and temperature checks. All mining workers departing from a populated urban area flying to one of two sites (Site A and B) in a remote northern Canadian region, which we deemed "at-risk", because healthcare services are limited and vulnerable to epidemics. Data collected between June and November 2020 on 15,873 clinical samples, indicate that molecular diagnosis allowed for identification of 13 infected individuals, who would have otherwise been missed by using solely nonpharmaceutical interventions. Overall, no outbreaks, COVID-19-related or other, were detected at the point of travel up to December 2021 since the implementation of the laboratory, suggesting this screening process is an effective means to protect at-risk communities. The success of this study suggests a process more practical than travel bans or an unfocused screening of air travelers everywhere.


Assuntos
Viagem Aérea , COVID-19 , Aeroportos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Canadá/epidemiologia , Humanos , SARS-CoV-2/genética , Viagem , Doença Relacionada a Viagens
7.
J Infect Dis ; 226(4): 616-624, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626109

RESUMO

Many characteristics associated with Ebola virus disease remain to be fully understood. It is known that direct contact with infected bodily fluids is an associated risk factor, but few studies have investigated parameters associated with transmission between individuals, such as the dose of virus required to facilitate spread and route of infection. Therefore, we sought to characterize the impact by route of infection, viremia, and viral shedding through various mucosae, with regards to intraspecies transmission of Ebola virus in a nonhuman primate model. Here, challenge via the esophagus or aerosol to the face did not result in clinical disease, although seroconversion of both challenged and contact animals was observed in the latter. Subsequent intramuscular or intratracheal challenges suggest that viral loads determine transmission likelihood to naive animals in an intramuscular-challenge model, which is greatly facilitated in an intratracheal-challenge model where transmission from challenged to direct contact animal was observed consistently.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Macaca mulatta , Carga Viral , Viremia
8.
Sci Rep ; 11(1): 18204, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521922

RESUMO

Available therapeutics for autoimmune disorders focused on mitigating symptoms, rather than treating the cause of the disorder. A novel approach using adeno-associated virus (AAV) could restore tolerance to the autoimmune targets and provide a permanent treatment for autoimmune diseases. Here, we evaluated the ability of collagen II T-cell epitopes packaged in adeno-associated virus serotype 8 (AAV-8) vectors to reduce pathogenic cellular and humoral responses against collagen and to mitigate the disease in the collagen-induced arthritis mouse model. The cytokines and immune cells involved in the immune suppression were also investigated. Mice treated with AAV-8 containing collagen II T-cell epitopes demonstrated a significant reduction in the arthritis symptoms, pathogenic collagen specific antibody and T cell responses. The AAV-8 mediated immune suppression was mediated by increased interleukin-10 expression and regulatory T cells expansion. Altogether, this study strengthens the notion that AAV vectors are promising candidates for the treatment of autoimmune diseases.


Assuntos
Artrite Experimental/terapia , Terapia de Imunossupressão/métodos , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Células Cultivadas , Colágeno Tipo II/imunologia , Dependovirus/genética , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos DBA
10.
J Infect Dis ; 219(3): 365-374, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30053014

RESUMO

Background: Zika virus (ZIKV) infection has been associated with prolonged viral excretion in human semen and causes testicular atrophy and infertility in 10-week-old immunodeficient mice. Methods: Male IFNAR-/- mice, knockout for type I interferon receptor, were immunized with GLS-5700, a deoxyribonucleic acid-based vaccine, before a subcutaneous ZIKV challenge with 6 × 105 plaque-forming units at 13 weeks of age. On day 28 postinfection, testes and epididymides were collected in some mice for histological and functional analyses, whereas others were mated with naive female wild-type C57BL/6J. Results: Although all mice challenged with ZIKV developed viremia, most of them were asymptomatic, showed no weight loss, and survived infection. On day 28 postinfection, none of the unvaccinated, infected mice (9 of 9) exhibited abnormal spermatozoa counts or motility. However, 33% (3 of 9) and 36% (4 of 11) of mated males from this group were infertile, from 2 independent studies. Contrarily, males from the noninfected and the vaccinated, infected groups were all fertile. On days 75 and 207 postinfection, partial recovery of fertility was observed in 66% (2 of 3) of the previously infertile males. Conclusions: This study reports the effects of ZIKV infection on male fertility in a sublethal, immunodeficient mouse model and the efficacy of GLS-5700 vaccination in preventing male infertility.


Assuntos
DNA/farmacologia , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/etiologia , Infertilidade Masculina/prevenção & controle , Infecção por Zika virus/complicações , Animais , Atrofia/etiologia , Modelos Animais de Doenças , Epididimo/patologia , Feminino , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Receptor de Interferon alfa e beta/genética , Sêmen , Comportamento Sexual Animal , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides , Testículo/patologia , Vacinação
11.
J Infect Dis ; 219(4): 544-555, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30304515

RESUMO

Background: There remains an important need for prophylactic anti-Ebola virus vaccine candidates that elicit long-lasting immune responses and can be delivered to vulnerable populations that are unable to receive live-attenuated or viral vector vaccines. Methods: We designed novel synthetic anti-Ebola virus glycoprotein (EBOV-GP) DNA vaccines as a strategy to expand protective breadth against diverse EBOV strains and evaluated the impact of vaccine dosing and route of administration on protection against lethal EBOV-Makona challenge in cynomolgus macaques. Long-term immunogenicity was monitored in nonhuman primates for >1 year, followed by a 12-month boost. Results: Multiple-injection regimens of the EBOV-GP DNA vaccine, delivered by intramuscular administration followed by electroporation, were 100% protective against lethal EBOV-Makona challenge. Impressively, 2 injections of a simple, more tolerable, and dose-sparing intradermal administration followed by electroporation generated strong immunogenicity and was 100% protective against lethal challenge. In parallel, we observed that EBOV-GP DNA vaccination induced long-term immune responses in macaques that were detectable for at least 1 year after final vaccination and generated a strong recall response after the final boost. Conclusions: These data support that this simple intradermal-administered, serology-independent approach is likely important for additional study towards the goal of induction of anti-EBOV immunity in multiple at-risk populations.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinas de DNA/imunologia , Animais , Modelos Animais de Doenças , Vacinas contra Ebola/administração & dosagem , Feminino , Injeções Intramusculares , Macaca fascicularis , Masculino , Vacinas de DNA/administração & dosagem
12.
mSphere ; 3(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381349

RESUMO

Ebola virus (EBOV) has been responsible for sporadic outbreaks in Central Africa since 1976 and has the potential of causing social disruption and public panic as illustrated by the 2013-2016 epidemic in West Africa. Transmission of EBOV has been described to occur via contact with infected bodily fluids, supported by data indicating that infectious EBOV could be cultured from blood, semen, saliva, urine, and breast milk. Parameters influencing transmission of EBOV are, however, largely undefined in part due to the lack of an established animal model to study mechanisms of pathogen spread. Here, we investigated EBOV transmissibility in male and female ferrets. After intranasal challenge, an infected animal was placed in direct contact with a naive ferret and in contact with another naive ferret (separated from the infected animal by a metal mesh) that served as the indirect-contact animal. All challenged animals, male direct contacts, and one male indirect contact developed disease and died. The remaining animals were not viremic and remained asymptomatic but developed EBOV-glycoprotein IgM and/or IgG specific antibodies-indicative of virus transmission. EBOV transmission via indirect contact was frequently observed in this model but resulted in less-severe disease compared to direct contact. Interestingly, these observations are consistent with the detection of specific antibodies in humans living in areas of EBOV endemicity.IMPORTANCE Our knowledge regarding transmission of EBOV between individuals is vague and is mostly limited to spreading via direct contact with infectious bodily fluids. Studying transmission parameters such as dose and route of infection is nearly impossible in naturally acquired cases-hence the requirement for a laboratory animal model. Here, we show as a proof of concept that ferrets can be used to study EBOV transmission. We also show that transmission in the absence of direct contact is frequent, as all animals with indirect contact with the infected ferrets had detectable antibodies to the virus, and one succumbed to infection. Our report provides a new small-animal model for studying EBOV transmission that does not require adaptation of the virus, providing insight into virus transmission among humans during epidemics.


Assuntos
Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Furões , Doença pelo Vírus Ebola/transmissão , Animais , Anticorpos Antivirais/sangue , Feminino , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Análise de Sobrevida
13.
J Infect Dis ; 218(suppl_5): S471-S474, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29889278

RESUMO

Ferrets are used for studying infections with wild-type Ebola virus isolates. Here, we investigated whether these animals are also susceptible to wild-type isolates of Marburg virus (MARV). Ferrets were challenged intramuscularly or intranasally with MARV strain Angola and monitored for 3 weeks. Unexpectedly, the animals neither showed observable signs of disease nor died of infection, and viremia was not detected after challenge. All animals were seropositive for MARV-specific immunoglobulin antibodies. Confirmatory studies with MARV strain Musoke and Ravn virus yielded the same outcomes. Therefore, ferrets may be of limited usefulness for studying the pathogenesis of MARV and Ravn virus infections.


Assuntos
Doença do Vírus de Marburg/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Furões , Masculino
14.
J Infect Dis ; 218(suppl_5): S466-S470, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29878131

RESUMO

During 2013-2016, a novel isolate of Ebola virus (EBOV-Makona) caused an epidemic in West Africa. The virus was distinct from known EBOV strains (EBOV-Kikwit and EBOV-Mayinga), which were responsible for previous outbreaks in Central Africa. To investigate the pathogenicity of EBOV-Makona, we engineered and rescued an early isolate (H.sapiens-wt/GIN/2014/Makona-Gueckedou-C07, called rgEBOV-C07) using an updated reverse-genetics system. rgEBOV-C07 was found to be highly pathogenic in both the knockout mouse and ferret models, with median lethal dose values of 0.078 and 0.015 plaque-forming units, respectively. Therefore, these animals are appropriate for screening potential countermeasures against EBOV-Makona without the need for species adaptation.


Assuntos
Ebolavirus/patogenicidade , Animais , Ebolavirus/genética , Feminino , Furões , Imunocompetência , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos Knockout
15.
Nat Commun ; 8: 15743, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589934

RESUMO

Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.


Assuntos
Testículo/virologia , Vacinas de DNA/farmacologia , Vacinas Virais/farmacologia , Infecção por Zika virus/fisiopatologia , Animais , Masculino , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Espermatozoides/patologia , Espermatozoides/virologia , Testículo/patologia , Proteínas do Envelope Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/prevenção & controle
16.
Oncotarget ; 8(28): 46262-46272, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28545034

RESUMO

Sudan virus (SUDV) outbreaks in Africa are highly lethal; however, the development and testing of novel antivirals and vaccines for this virus has been limited by a lack of suitable animal models. Non-human primates (NHP) remain the gold standard for modeling filovirus disease, but they are not conducive to screening large numbers of experimental compounds and should only be used to test the most promising candidates. Therefore, other smaller animal models are a valuable asset. We have recently developed a guinea-pig adapted SUDV virus that is lethal in guinea pigs. In our current study, we show that ferrets are susceptible to wild-type SUDV, providing a small animal model to directly study clinical isolates, screen experimental anti-SUDV compounds and potentially study viral transmission.


Assuntos
Modelos Animais de Doenças , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Furões , Doença pelo Vírus Ebola/virologia , Animais , Anticorpos Antivirais/metabolismo , Feminino , Cobaias , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/transmissão , Humanos , Primatas , Vacinação
17.
Cell ; 169(5): 878-890.e15, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525755

RESUMO

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Reações Cruzadas , Ebolavirus/classificação , Ebolavirus/imunologia , Feminino , Furões , Doença pelo Vírus Ebola/virologia , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Alinhamento de Sequência , Células Vero
18.
J Infect Dis ; 214(suppl 3): S281-S289, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27651412

RESUMO

Enhanced virulence and/or transmission of West African Ebola virus (EBOV) variants, which are divergent from their Central African counterparts, are suspected to have contributed to the sizable toll of the recent Ebola virus disease (EVD) outbreak. This study evaluated the pathogenicity and shedding in rhesus macaques infected with 1 of 2 West African isolates (EBOV-C05 or EBOV-C07) or a Central African isolate (EBOV-K). All animals infected with EBOV-C05 or EBOV-C07 died of EVD, whereas 2 of 3 EBOV-K-infected animals died. The viremia level was elevated 10-fold in EBOV-C05-infected animals, compared with EBOV-C07- or EBOV-K-infected animals. More-severe lung pathology was observed in 2 of 6 EBOV-C05/C07-infected macaques. This is the first detailed analysis of the recently circulating EBOV-C05/C07 in direct comparison to EBOV-K with 6 animals per group, and it showed that EBOV-C05 but not EBOV-C07 can replicate at higher levels and cause more tissue damage in some animals. Increased virus shedding from individuals who are especially susceptible to EBOV replication is possibly one of the many challenges facing the community of healthcare and policy-making responders since the beginning of the outbreak.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Animais , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/patologia , Humanos , Macaca mulatta , Especificidade da Espécie , Viremia , Virulência , Eliminação de Partículas Virais
19.
J Virol ; 90(20): 9209-23, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489269

RESUMO

UNLABELLED: Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE: The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics.


Assuntos
Ebolavirus/imunologia , Furões/virologia , Infecções por Filoviridae/microbiologia , Filoviridae/imunologia , África Ocidental , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Infecções por Filoviridae/virologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Vacinas Virais/imunologia
20.
Expert Rev Anti Infect Ther ; 14(6): 557-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27176909

RESUMO

The magnitude of the 2014-2016 West African Ebola virus outbreak has highlighted the importance of immediate and rapid deployment of control measures in affected areas. While many prophylactic and therapeutic options entered clinical trials in the past two years, larger use to impact on Ebola spread will not be possible until at least one product meets final approval by regulatory agencies. Control of the West African outbreak was achieved almost entirely by breaking chain of transmissions through case identification and specialized treatment, communication, safe burials and other proven methods. To achieve this in a timely manner, epidemiologists and medical teams are working in concert with laboratories to identify infected individuals and provide care within Ebola treatment units. Herein, we review an outbreak response workflow from the point of view of mobile laboratories and summarize methods that have been used by them during the West African Ebola virus outbreak of 2014-2016.


Assuntos
Serviços de Laboratório Clínico/organização & administração , Surtos de Doenças/prevenção & controle , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Unidades Móveis de Saúde/organização & administração , África Ocidental/epidemiologia , Humanos , Equipamento de Proteção Individual , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Fluxo de Trabalho , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...