Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785836

RESUMO

The present study aimed to evaluate the in vitro antibacterial and antibiofilm activity of bacterial cellulose hydrogel produced by Zoogloea sp. (HYDROGEL) containing vancomycin (VAN) against bacterial strains that cause wound infections, such as multidrug-resistant (MDR) Staphylococcus aureus and Staphylococcus epidermidis. Initially, HYDROGEL was obtained from sugar cane molasses, and scanning electron microscopy (SEM) was performed to determine morphological characteristics. Then, VAN was incorporated into HYDROGEL (VAN-HYDROGEL). The antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against methicillin-sensitive S. aureus (MSSA) ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 33591, S. epidermidis INCQS 00016 (ATCC 12228), five clinical isolates of MRSA, and nine clinical isolates of methicillin-resistant S. epidermidis, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Additionally, the antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was studied using the time-kill assay. Subsequently, the antibiofilm activity of VAN, HYDROGEL, and VAN-HYDROGEL was evaluated using crystal violet and Congo red methods, as well as SEM analysis. VAN and VAN-HYDROGEL showed bacteriostatic and bactericidal activity against MRSA and methicillin-resistant S. epidermidis strains. HYDROGEL did not show any antibacterial activity. Analysis of the time-kill assay indicated that HYDROGEL maintained the antibacterial efficacy of VAN, highlighting its efficiency as a promising carrier. Regarding antibiofilm activity, VAN and HYDROGEL inhibited biofilm formation but did not demonstrate biofilm eradication activity against methicillin-resistant S. aureus and S. epidermidis strains. However, it was observed that the biofilm eradication potential of VAN was enhanced after incorporation into HYDROGEL, a result also proven through images obtained by SEM. From the methods carried out in this study, it was possible to observe that HYDROGEL preserved the antibacterial activity of vancomycin, aside from exhibiting antibiofilm activity and enhancing the antibiofilm effect of VAN. In conclusion, this study demonstrated the potential of HYDROGEL as a candidate and/or vehicle for antibiotics against MDR bacteria that cause wound infections.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34457025

RESUMO

Medicinal plants have been used for centuries by communities worldwide, as they have diverse biological properties and are effective against numerous diseases. The genus Syagrus stands out for its versatility and for so many activities presented by these palm trees, mainly due to its rich chemical and fatty acid compositions. The genus has antibacterial potential, has antibiofilm, antiparasitic, antioxidant, prebiotic, antiulcerogenic, anticholinesterase, and hypoglycemic activities, and can produce biodiesel, amid others. Among all species, Syagrus coronata and Syagrus romanzoffiana stand out, presenting the greatest number of activities and applications. The secondary metabolites obtained from these palm trees present high activity even in low concentrations and can be used against infections and chronic diseases. Furthermore, these plants have been used in some communities for years and have presented healing properties, especially in inflammatory processes. Therefore, the Syagrus genus proves to be promising, which shows a lot of therapeutic potential.

3.
Braz J Microbiol ; 52(1): 267-278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33231865

RESUMO

Due to the severity of infections caused by P. aeruginosa and the limitations in treatment, it is necessary to find new therapeutic alternatives. Thus, the use of silver nanoparticles (AgNPs) is a viable alternative because of their potential actions in the combat of microorganisms, showing efficacy against Gram-positive and Gram-negative bacteria, including multidrug-resistant microorganisms (MDR). In this sense, the aim of this work was to conduct a literature review related to the antibacterial and antibiofilm activity of AgNPs against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. The AgNPs are promising for future applications, which may match the clinical need for effective antibiotic therapy. The size of AgNPs is a crucial element to determine the therapeutic activity of nanoparticles, since smaller particles present a larger surface area of contact with the microorganism, affecting their vital functioning. AgNPs adhere to the cytoplasmic membrane and cell wall of microorganisms, causing disruption, penetrating the cell, interacting with cellular structures and biomolecules, and inducing the generation of reactive oxygen species and free radicals. Studies describe the antimicrobial activity of AgNPs at minimum inhibitory concentration (MIC) between 1 and 200 µg/mL against susceptible and MDR P. aeruginosa strains. These studies have also shown antibiofilm activity through disruption of biofilm structure, and oxidative stress, inhibiting biofilm growth at concentrations between 1 and 600 µg/mL of AgNPs. This study evidences the advance of AgNPs as an antibacterial and antibiofilm agent against Pseudomonas aeruginosa strains, demonstrating to be an extremely promising approach to the development of new antimicrobial systems.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Nanopartículas Metálicas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...