Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 72(10): 1887-1903, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399271

RESUMO

OBJECTIVE: Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN: We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS: We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION: HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.


Assuntos
Antígenos CD , Apirase , Neoplasias Colorretais , Neoplasias Hepáticas , Linfócitos T , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Apirase/genética , Antígenos CD/genética , Engenharia Celular
2.
Sci Immunol ; 7(74): eabn6563, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984893

RESUMO

Adoptive immunotherapy with T cells engineered with tumor-specific T cell receptors (TCRs) holds promise for cancer treatment. However, suppressive cues generated in the tumor microenvironment (TME) can hinder the efficacy of these therapies, prompting the search for strategies to overcome these detrimental conditions and improve cellular therapeutic approaches. CD1d-restricted invariant natural killer T (iNKT) cells actively participate in tumor immunosurveillance by restricting suppressive myeloid populations in the TME. Here, we showed that harnessing iNKT cells with a second TCR specific for a tumor-associated peptide generated bispecific effectors for CD1d- and major histocompatibility complex (MHC)-restricted antigens in vitro. Upon in vivo transfer, TCR-engineered iNKT (TCR-iNKT) cells showed the highest efficacy in restraining the progression of multiple tumors that expressed the cognate antigen compared with nontransduced iNKT cells or CD8+ T cells engineered with the same TCR. TCR-iNKT cells achieved robust cancer control by simultaneously modulating intratumoral suppressive myeloid populations and killing malignant cells. This dual antitumor function was further enhanced when the iNKT cell agonist α-galactosyl ceramide (α-GalCer) was administered as a therapeutic booster through a platform that ensured controlled delivery at the tumor site, named multistage vector (MSV). These preclinical results support the combination of tumor-redirected TCR-iNKT cells and local α-GalCer boosting as a potential therapy for patients with cancer.


Assuntos
Células T Matadoras Naturais , Neoplasias , Receptores de Antígenos de Linfócitos T , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Engenharia Celular , Células Mieloides , Células T Matadoras Naturais/fisiologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Microambiente Tumoral
3.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724271

RESUMO

We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.


Assuntos
Fígado , Subpopulações de Linfócitos T , Citometria de Fluxo/métodos , Fluxo de Trabalho
4.
Nat Commun ; 12(1): 4844, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381053

RESUMO

Acute leukemia relapsing after chemotherapy plus allogeneic hematopoietic stem cell transplantation can be treated with donor-derived T cells, but this is hampered by the need for donor/recipient MHC-matching and often results in graft-versus-host disease, prompting the search for new donor-unrestricted strategies targeting malignant cells. Leukemia blasts express CD1c antigen-presenting molecules, which are identical in all individuals and expressed only by mature leukocytes, and are recognized by T cell clones specific for the CD1c-restricted leukemia-associated methyl-lysophosphatidic acid (mLPA) lipid antigen. Here, we show that human T cells engineered to express an mLPA-specific TCR, target diverse CD1c-expressing leukemia blasts in vitro and significantly delay the progression of three models of leukemia xenograft in NSG mice, an effect that is boosted by mLPA-cellular immunization. These results highlight a strategy to redirect T cells against leukemia via transfer of a lipid-specific TCR that could be used across MHC barriers with reduced risk of graft-versus-host disease.


Assuntos
Antígenos CD1/imunologia , Glicoproteínas/imunologia , Leucemia/imunologia , Lisofosfolipídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Doadores de Tecidos , Animais , Apresentação de Antígeno , Antígenos CD1/metabolismo , Glicoproteínas/metabolismo , Humanos , Imunoterapia Adotiva , Leucemia/metabolismo , Leucemia/terapia , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Eur J Immunol ; 51(8): 1992-2005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081326

RESUMO

The phenotype of infused cells is a major determinant of Adoptive T-cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state-of-the-art and innovative culture conditions to generate stem-like memory cells (TSCM ) suitable for ACT. Noticeably, the combination of IL-7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit-TSCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T-cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID-19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.


Assuntos
Mineração de Dados/métodos , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , COVID-19/sangue , COVID-19/imunologia , Citocinas/metabolismo , Engenharia Genética , Humanos , Memória Imunológica , Imunofenotipagem , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , SARS-CoV-2/imunologia
6.
Nat Commun ; 9(1): 1787, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725010

RESUMO

In chronic lymphocytic leukemia (CLL), the non-hematopoietic stromal microenvironment plays a critical role in promoting tumor cell recruitment, activation, survival, and expansion. However, the nature of the stromal cells and molecular pathways involved remain largely unknown. Here, we demonstrate that leukemic B lymphocytes induce the activation of retinoid acid synthesis and signaling in the microenvironment. Inhibition of RA-signaling in stromal cells causes deregulation of genes associated with adhesion, tissue organization and chemokine secretion including the B-cell chemokine CXCL13. Notably, reducing retinoic acid precursors from the diet or inhibiting RA-signaling through retinoid-antagonist therapy prolong survival by preventing dissemination of leukemia cells into lymphoid tissues. Furthermore, mouse and human leukemia cells could be distinguished from normal B-cells by their increased expression of Rarγ2 and RXRα, respectively. These findings establish a role for retinoids in murine CLL pathogenesis, and provide new therapeutic strategies to target the microenvironment and to control disease progression.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Células Estromais/patologia , Tretinoína/fisiologia , Animais , Linhagem Celular , Quimiocina CXCL13/metabolismo , Técnicas de Cocultura , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Sobrevida , Tretinoína/metabolismo , Microambiente Tumoral
7.
Cytokine Growth Factor Rev ; 36: 117-123, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28712863

RESUMO

Disease recurrence following chemotherapy and allogeneic hematopoietic cell transplantation is the major unmet clinical need of acute leukemia. Adoptive cell therapy (ACT) with allogeneic T lymphocytes can control recurrences at the cost of inducing detrimental GVHD. Targeting T cell recognition on leukemia cells is therefore needed to overcome the problem and ensure safe and durable disease remission. In this review, we discuss adoptive cells therapy based on CD1-restricted T cells specific for tumor associated self-lipid antigens. CD1 molecules are identical in every individual and expressed essentially on mature hematopoietic cells and leukemia blasts, but not by parenchymatous cells, while lipid antigens are enriched in malignant cells and unlike to mutate upon immune-mediated selective pressure. Redirecting T cells against self-lipids presented by CD1 molecules can thus provide an appealing cell therapy strategy for acute leukemia that is patient-unrestricted and can minimize risks for GVHD, implying potential prognostic improvement for this cancer.


Assuntos
Antígenos CD1/imunologia , Imunoterapia Adotiva/métodos , Leucemia/terapia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia/imunologia , Camundongos , Neoplasias/imunologia
8.
Blood ; 129(26): 3440-3451, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28465341

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by the expansion of malignant CD5+ B lymphocytes in blood, bone marrow, and lymphoid organs. CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T lymphocytes strongly implicated in tumor surveillance. We investigated the impact of iNKT cells in the natural history of the disease in the Eµ-Tcl1 (Tcl1) CLL mouse model and 68 CLL patients. We found that Tcl1-CLL cells express CD1d and that iNKT cells critically delay disease onset but become functionally impaired upon disease progression. In patients, disease progression correlates with high CD1d expression on CLL cells and impaired iNKT cells. Conversely, disease stability correlates with negative or low CD1d expression on CLL cells and normal iNKT cells, suggesting indirect leukemia control. iNKT cells indeed hinder CLL survival in vitro by restraining CD1d-expressing nurse-like cells, a relevant proleukemia macrophage population. Multivariable analysis identified iNKT cell frequency as an independent predictor of disease progression. Together, these results support the contribution of iNKT cells to CLL immune surveillance and highlight iNKT cell frequency as a prognostic marker for disease progression.


Assuntos
Vigilância Imunológica , Leucemia Linfocítica Crônica de Células B/imunologia , Células T Matadoras Naturais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD1d/sangue , Progressão da Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Contagem de Linfócitos , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico
9.
Oncoimmunology ; 4(3): e970463, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25949888

RESUMO

A subset of CD1c-restricted T lymphocytes exhibits strong reactivity against leukemia cells. These T cells recognize methyl-lysophosphatidic acid (mLPA), a novel lipid antigen produced by acute leukemia cells. Considering that CD1c-restricted T cells display efficacious anti-leukemia activities in a mouse model, this lipid antigen thus represents a novel target in the immunotherapy of hematological malignancies.

10.
J Exp Med ; 211(7): 1363-77, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24935257

RESUMO

T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c(+) acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c(+) human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy.


Assuntos
Antígenos CD1/imunologia , Autoantígenos/imunologia , Crise Blástica/imunologia , Glicoproteínas/imunologia , Vigilância Imunológica , Leucemia Mieloide Aguda/imunologia , Lisofosfolipídeos/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Linfócitos T/imunologia , Adolescente , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD1/genética , Autoantígenos/genética , Crise Blástica/genética , Crise Blástica/patologia , Criança , Pré-Escolar , Feminino , Regulação Leucêmica da Expressão Gênica/genética , Regulação Leucêmica da Expressão Gênica/imunologia , Glicoproteínas/genética , Humanos , Células Jurkat , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Lisofosfolipídeos/genética , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/patologia
11.
Oncoimmunology ; 1(3): 355-357, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22737613

RESUMO

CD1d-restricted invariant (i)NKT cells are innate-like, lipid-reactive T lymphocytes implicated in the control of infections, cancer and autoimmunity. Our study suggests that the reconstitution of the peripheral iNKT cell compartment, following HLA-haploidentical hematopoietic stem cell transplantation, associates with leukemia control in children affected by different hematological malignancies.

12.
J Immunol ; 186(7): 4490-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357532

RESUMO

Immune reconstitution plays a crucial role on the outcome of patients given T cell-depleted HLA-haploidentical hematopoietic stem cell transplantation (hHSCT) for hematological malignancies. CD1d-restricted invariant NKT (iNKT) cells are innate-like, lipid-reactive T lymphocytes controlling infections, cancer, and autoimmunity. Adult mature iNKT cells are divided in two functionally distinct CD4(+) and CD4(-) subsets that express the NK receptor CD161 and derive from thymic CD4(+)CD161(-) precursors. We investigated iNKT cell reconstitution dynamics in 33 pediatric patients given hHSCT for hematological malignancies, with a follow-up reaching 6 y posttransplantation, and correlated their emergence with disease relapse. iNKT cells fully reconstitute and rapidly convert into IFN-γ-expressing effectors in the 25 patients maintaining remission. CD4(+) cells emerge earlier than the CD4(-) ones, both displaying CD161(-) immature phenotypes. CD4(-) cells expand more slowly than CD4(+) cells, though they mature with significantly faster kinetics, reaching full maturation by 18 mo post-hHSCT. Between 4 and 6 y post-hHSCT, mature CD4(-) iNKT cells undergo a substantial expansion burst, resulting in a CD4(+)

Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Antígenos HLA/imunologia , Transplante de Células-Tronco Hematopoéticas , Leucemia/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/transplante , Doença Aguda , Adolescente , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/transplante , Criança , Pré-Escolar , Feminino , Antígenos HLA/administração & dosagem , Humanos , Leucemia/patologia , Leucemia/terapia , Estudos Longitudinais , Masculino , Camundongos , Células T Matadoras Naturais/citologia , Indução de Remissão , Adulto Jovem
13.
Eur J Immunol ; 41(3): 602-10, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21246542

RESUMO

CD1 molecules present lipid antigens to T cells. An intriguing subset of human T cells recognize CD1-expressing cells without deliberately added lipids. Frequency, subset distribution, clonal composition, naïve-to-memory dynamic transition of these CD1 self-reactive T cells remain largely unknown. By screening libraries of T-cell clones, generated from CD4(+) or CD4(-) CD8(-) double negative (DN) T cells sorted from the same donors, and by limiting dilution analysis, we find that the frequency of CD1 self-reactive T cells is unexpectedly high in both T-cell subsets, in the range of 1/10-1/300 circulating T cells. These T cells predominantly recognize CD1a and CD1c and express diverse TCRs. Frequency comparisons of T-cell clones from sorted naïve and memory compartments of umbilical cord and adult blood show that CD1 self-reactive T cells are naïve at birth and undergo an age-dependent increase in the memory compartment, suggesting a naïve/memory adaptive-like population dynamics. CD1 self-reactive clones exhibit mostly Th1 and Th0 functional activities, depending on the subset and on the CD1 isotype restriction. These findings unveil the unanticipated relevance of self-lipid T-cell response in humans and clarify the basic parameters of the lipid-specific T-cell physiology.


Assuntos
Antígenos CD1/metabolismo , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa , Adulto , Apresentação de Antígeno , Autoantígenos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Citotoxicidade Imunológica , Sangue Fetal/citologia , Sangue Fetal/imunologia , Humanos , Imunidade Celular , Memória Imunológica , Técnicas In Vitro , Recém-Nascido , Lipídeos/imunologia , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/citologia
14.
Clin Immunol ; 140(2): 152-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21185785

RESUMO

T-cell-depleted hematopoietic stem cell transplantation from an HLA haploidentical relative (hHSCT) is a useful therapy for children with high-risk leukemia lacking suitable HLA-matched donors. The immune deficiency ensuing hHSCT renders patients susceptible to life-threatening infections and disease recurrence. Adoptive immunotherapy can restore/enhance early post-transplantation immunocompetence of hHSCT recipients. Efforts are directed to identify strategies for inducing graft-versus-leukemia (GVL) response, while avoiding graft-versus-host disease (GVHD) occurrence. CD1d-restricted invariant iNKT cells are innate-like, lipid-reactive T lymphocytes implicated in the control of innate and adaptive immunity. Preclinical data suggest that iNKT cells positively modulate both GVL response and GVHD. Our recent findings in a cohort of 22 children given hHSCT for different hematological malignancies show that failure to reconstitute iNKT cells after transplantation correlates with leukemia relapse. In this review, we will discuss potential new options for adoptively transferring donor-derived iNKT cells into hHSCT recipients in the early post-transplantation period to prevent disease recurrence.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/métodos , Leucemia/terapia , Células T Matadoras Naturais/imunologia , Doadores de Sangue , Criança , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Leucemia/genética , Leucemia/imunologia , Prevenção Secundária , Transplante Homólogo
15.
Biochem Biophys Res Commun ; 398(3): 420-5, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20599711

RESUMO

The aim of this study was to examine the expression of G protein-coupled receptor (GPR)35 in human invariant natural killer T (iNKT) cells and to determine the functional effects induced by selective activation of this receptor. RT-PCR analysis showed that both human iNKT cells and resting PBMC expressed GPR35; GPR35 protein resulted mostly localized in the plasma membrane, while it internalized in punctate intracellular structures following specific receptor activation (Western blot and immunofluorescence/confocal microscopy analysis). The specific activation of GPR35 by selective receptor agonists [l-kynurenic acid (KYNA)] or 1,4-dihydro-5-(2-propoxyphenyl)-7H-1,2,3-triazolo [4,5-d]pyrimidine-7-one (zaprinast)] functionally correlated with a significant reduction in IL-4 release from alpha-galactosylceramide (alpha-GalCer)-activated human iNKT cells, and this effect resulted mediated by pertussis toxin (PTX)-sensitive Gi/o proteins. In conclusion, our results demonstrate that human iNKT cells express GPR35 functionally active in reducing IL-4 release.


Assuntos
Membrana Celular/metabolismo , Células T Matadoras Naturais/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Interleucina-4/metabolismo , Ácido Cinurênico/farmacologia , Toxina Pertussis/farmacologia , Purinonas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Immunol ; 183(4): 2506-12, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19625646

RESUMO

Invariant NK T (iNKT) cells are a separate lineage of T lymphocytes with innate effector functions. They express an invariant TCR specific for lipids presented by CD1d and their development and effector differentiation rely on a unique gene expression program. We asked whether this program includes microRNAs, small noncoding RNAs that regulate gene expression posttranscriptionally and play a key role in the control of cellular differentiation programs. To this aim, we investigated iNKT cell development in mice in which Dicer, the RNase III enzyme that generates functional microRNAs, is deleted in cortical thymocytes. We find that Dicer deletion results in a substantial reduction of iNKT cells in thymus and their disappearance from the periphery, unlike mainstream T cells. Without Dicer, iNKT cells do not complete their innate effector differentiation and display a defective homeostasis due to increased cell death. Differentiation and homeostasis of iNKT cells require Dicer in a cell-autonomous fashion. Furthermore, we identify a miRNA profile specific for iNKT cells, which exhibits features of activated/effector T lymphocytes, consistent with the idea that iNKT cells undergo agonist thymic selection. Together, these results define a critical role of the Dicer-dependent miRNA pathway in the physiology of iNKT cells.


Assuntos
Diferenciação Celular/imunologia , RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Regulação Enzimológica da Expressão Gênica/imunologia , MicroRNAs/genética , Células T Matadoras Naturais/enzimologia , Células T Matadoras Naturais/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Inibidores do Crescimento/genética , Linfopenia/enzimologia , Linfopenia/genética , Linfopenia/imunologia , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , Células T Matadoras Naturais/citologia , Ribonuclease III , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/enzimologia , Subpopulações de Linfócitos T/imunologia , Timo/citologia , Timo/enzimologia , Timo/imunologia
17.
J Immunol ; 180(7): 4415-24, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18354162

RESUMO

Conventional MHC-restricted T lymphocytes leave thymus with a naive phenotype and require Ag-dependent stimulation coupled to proliferation to acquire effector functions. Invariant (i)NKT cells are a subset of T lymphocytes considered innate because they display an effector memory phenotype independent of TCR stimulation by foreign Ags. We investigated the effector differentiation program followed by human iNKT cells by studying cells from a relevant set of fetal thymi and umbilical cord blood samples. We find that human fetal iNKT cells have already started a differentiation program that activates the epigenetic and transcriptional control of ifng and il4 genes, leading at birth to cells that express these cytokines upon TCR signaling but independently of proliferation in vitro. Both ex vivo and in vitro analysis of fetal and neonatal iNKT cells delineate an effector differentiation program linked to cell division in vivo, and they identify IL-7 as one of the crucial signals driving this program in the apparent absence of Ag stimulation. Consistent with these data, human fetal and neonatal iNKT cells are hyperresponsive in vitro to IL-7 in comparison to conventional T cells, owing to an increased expression and signaling function of the IL-7 receptor alpha-chain. The innate nature of human iNKT cells could thus derive from lineage-specific developmental cues that selectively make these cells efficient IL-7 responders following thymic selection.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Interleucina-7/farmacologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Epigênese Genética/genética , Epigênese Genética/imunologia , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Transcrição Gênica/genética
18.
Blood ; 110(1): 251-8, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17363727

RESUMO

The CD4 coreceptor is crucial in the activation of major histocompatibility complex (MHC) class II restricted CD4 (+) T lymphocytes by binding the same MHC class as the T-cell receptor (TCR) and by potentiating TCR-dependent signaling. CD4 is also expressed by invariant natural killer T cells (iNKT), which recognize natural and synthetic lipid antigens, such as alpha-galactosyl ceramide (alpha-GalCer), in association with the MHC class I-like CD1d molecule. Human iNKT cells can be divided into 2 major subsets depending on CD4 expression: CD4 (+) iNKT preferentially produce T-helper (Th)0/Th2 cytokines, whereas CD4(-) iNKT cells produce Th1 cytokines after antigenic activation. Cytokines produced by iNKT may have immunomodulatory roles in various physiopathologic contexts, but their mode of regulation by iNKT cells remains ill-defined. Using blocking reagents neutralizing CD4 binding, experimental systems where MHC class II molecules are absent and recombinant alpha-GalCer/CD1d complexes, we show that CD4 potentiates human iNKT cell activation by engaging CD1d molecules. These results indicate that the CD4 coreceptors may contribute to the fine tuning of iNKT cells reactivity.


Assuntos
Antígenos CD1/metabolismo , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Matadoras Naturais/imunologia , Antígenos CD1/imunologia , Antígenos CD1d , Antígenos CD4/imunologia , Galactosilceramidas/imunologia , Antígenos de Histocompatibilidade , Humanos , Ativação Linfocitária/imunologia
19.
J Immunol ; 173(2): 1417-25, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15240738

RESUMO

Invariant (inv)NKT cells are a subset of autoreactive lymphocytes that recognize endogenous lipid ligands presented by CD1d, and are suspected to regulate the host response to cell stress and tissue damage via the prompt production of cytokines. We investigated invNKT cell response during the progression of chronic viral hepatitis caused by hepatitis B or C virus infection, a major human disease characterized by a diffused hepatic necroinflammation with scarring fibrotic reaction, which can progress toward cirrhosis and cancer. Ex vivo frequency and cytokine production were determined in circulating and intrahepatic invNKT cells from controls (healthy subjects or patients with nonviral benign or malignant focal liver damage and minimal inflammatory response) or chronic viral hepatitis patients without cirrhosis, with cirrhosis, or with cirrhosis and hepatocellular carcinoma. invNKT cells increase in chronically infected livers and undergo a substantial modification in their effector functions, consisting in the production of the type 2 profibrotic IL-4 and IL-13 cytokines, which characterizes the progression of hepatic fibrosis to cirrhosis. CD1d, nearly undetectable in noncirrhotic and control livers, is strongly expressed by APCs in cirrhotic ones. Furthermore, in vitro CD1d-dependent activation of invNKT cells from healthy donors elicits IL-4 and IL-13. Together, these findings show that invNKT cells respond to the progressive liver damage caused by chronic hepatitis virus infection, and suggest that these cells, possibly triggered by the recognition of CD1d associated with viral- or stress-induced lipid ligands, contribute to the pathogenesis of cirrhosis by expressing a set of cytokines involved in the progression of fibrosis.


Assuntos
Citocinas/metabolismo , Hepatite Viral Humana/metabolismo , Células Matadoras Naturais/metabolismo , Cirrose Hepática/metabolismo , Linfócitos T/metabolismo , Adulto , Idoso , Células Apresentadoras de Antígenos , Antígenos CD1/metabolismo , Antígenos CD1d , Feminino , Humanos , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade
20.
Vaccine ; 21 Suppl 2: S48-54, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12763683

RESUMO

Invariant NKT cells are a peculiar subset of T lymphocytes whose features, highly conserved both in the mouse and the human system, strongly recall those of other "innate lymphocytes". Following recognition of CD1d-presented glycosphingolipid antigens invariant NKT promptly release high amount of diverse cytokines concurring to the activation of the actors of both innate and acquired immune responses. For this reason, in recent years NKT cells have been the object of intensive study, aimed to understand their role in diverse patho-physiological conditions and to exploit the possibility to take advantage of their "adjuvant-like" activity in the formulation of new vaccines. As antibodies are an essential part of many immune responses, we focused our attention on invariant NKT-B cell interactions analyzing their influences on B cell activation and effector functions. The results of this study demonstrate that human invariant NKT cells can provide direct help for B cell proliferation and antibody production through CD1d-restricted mechanisms. Remarkably, help to B lymphocytes by invariant NKT cells is delivered also in the absence of exogenous antigen, suggesting the existence of an endogenous ligand presented by CD1d on B cells.


Assuntos
Linfócitos B/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Antígenos CD1/fisiologia , Antígenos CD1d , Humanos , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA