Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2667: 31-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145274

RESUMO

Cryptococcal meningitis affects millions of people worldwide and is especially prevalent in regions with a high burden of HIV/AIDS. The study of the pathophysiology of this often fatal disease has been significantly hindered by the lack of reliable experimental models, especially at the level of the brain, which is the main organ of injury. Here we outline our novel protocol for the use of hippocampal organotypic brain slice cultures (HOCs) to study the host-fungal interactions during cryptococcal infections of the brain. HOCs are a powerful platform for investigating neuroimmune interactions as they allow for the preservation of all innate neuroglial cells including microglia, astrocytes, and neurons, all of which maintain their three-dimensional architecture and functional connectivity. We made HOCs from neonatal mice and infected these with a fluorescent strain of Cryptococcus neoformans for 24 h. Using immunofluorescent staining, we confirmed the presence and morphology of microglia, astrocytes, and neurons in HOCs prior to infection. Using fluorescent and light microscopy, we also confirmed that Cryptococcus neoformans encapsulates and buds in vitro, as it would in a host. Finally, we demonstrate that infection of HOCs with Cryptococcus neoformans results in close association of the fungal cells with host microglial cells. Our results demonstrate the utility of HOCs as a model to study the pathophysiology and host neuroimmune responses in neurocryptococcosis, which may assist in improving our collective understanding of the pathogenesis of this disease.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Camundongos , Animais , Meningite Criptocócica/microbiologia , Meningite Criptocócica/patologia , Cryptococcus neoformans/fisiologia , Encéfalo/patologia , Microglia/patologia
2.
Epilepsy Curr ; 23(2): 105-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122403

RESUMO

Neurocysticercosis (NCC) is the most prevalent parasitic infection of the central nervous system. It is caused by the presence of larvae of the cestode Taenia solium in the brain. The most common symptom of NCC is seizures, and it is widely considered the world's leading cause of preventable epilepsy. Despite the prevalence and impact of NCC, a thorough, mechanistic understanding of seizure generation is still lacking. In this review, we address the question "What causes seizures in NCC?" by summarizing and discussing the major theories that seek to explain the seizurogenic and epileptogenic processes in this disorder. In addition, we highlight the potential for recent advances in disease modeling to help accelerate progress in this area.

3.
Int J Parasitol ; 51(8): 685-692, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753094

RESUMO

Human cysticercosis is a disease caused by larvae of the cestode Taenia solium. It is an important common cause of adult-onset seizures world-wide where it exacts a debilitating toll on the health and well-being of affected communities. It is commonly assumed that the major symptoms associated with cysticercosis are a result of the direct presence of larvae in the brain. As a result, the possible effects of peripherally located larvae on the central nervous system are not well understood. To address this question, we utilised the Taenia crassiceps intra-peritoneal murine model of cysticercosis, where larvae are restricted to the peritoneal cavity. In this model, previous research has observed behavioural changes in rodents but not the development of seizures. Here we used ELISAs, immunoblotting and the Evans Blue test for blood-brain barrier permeability to explore the central effects of peripheral infection of mice with T. crassiceps. We identified high levels of parasite-targeting immunoglobulins in the sera of T. crassiceps-infected mice. We show that the T. crassciceps larvae themselves also contain and release host immunoglobulins over time. Additionally, we describe, for the first known time, significantly increased levels of IgG within the hippocampi of infected mice, which are accompanied by changes in blood-brain barrier permeability. However, these T. crassiceps-induced changes were not accompanied by alterations to the levels of proinflammatory, pro-seizure cytokines in the hippocampus. These findings contribute to the understanding of systemic and neuroimmune responses in the T. crassiceps model of cysticercosis, with implications for the pathogenesis of human cysticercosis.


Assuntos
Cisticercose , Taenia solium , Taenia , Animais , Sistema Nervoso Central , Imunoglobulinas , Camundongos , Camundongos Endogâmicos BALB C
4.
PLoS Negl Trop Dis ; 14(12): e0008966, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347447

RESUMO

Larvae of the cestodes Taenia solium and Taenia crassiceps infect the central nervous system of humans. Taenia solium larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy worldwide. Relatively little is understood about how cestode-derived products modulate host neural and immune signalling. Acetylcholinesterases, a class of enzyme that breaks down acetylcholine, are produced by a host of parasitic worms to aid their survival in the host. Acetylcholine is an important signalling molecule in both the human nervous and immune systems, with powerful modulatory effects on the excitability of cortical networks. Therefore, it is important to establish whether cestode derived acetylcholinesterases may alter host neuronal cholinergic signalling. Here we make use of multiple techniques to profile acetylcholinesterase activity in different extracts of both Taenia crassiceps and Taenia solium larvae. We find that the larvae of both species contain substantial acetylcholinesterase activity. However, acetylcholinesterase activity is lower in Taenia solium as compared to Taenia crassiceps larvae. Further, whilst we observed acetylcholinesterase activity in all fractions of Taenia crassiceps larvae, including on the membrane surface and in the excreted/secreted extracts, we could not identify acetylcholinesterases on the membrane surface or in the excreted/secreted extracts of Taenia solium larvae. Bioinformatic analysis revealed conservation of the functional protein domains in the Taenia solium acetylcholinesterases, when compared to the homologous human sequence. Finally, using whole-cell patch clamp recordings in rat hippocampal brain slice cultures, we demonstrate that Taenia larval derived acetylcholinesterases can break down acetylcholine at a concentration which induces changes in neuronal signalling. Together, these findings highlight the possibility that Taenia larval acetylcholinesterases can interfere with cholinergic signalling in the host, potentially contributing to pathogenesis in neurocysticercosis.


Assuntos
Acetilcolinesterase/metabolismo , Neurocisticercose/parasitologia , Transdução de Sinais , Taenia solium/enzimologia , Acetilcolinesterase/genética , Animais , Feminino , Humanos , Larva , Camundongos Endogâmicos C57BL , Taenia solium/genética
5.
Parasitology ; 146(5): 553-562, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30430955

RESUMO

Neurocysticercosis (NCC) occurs following brain infection by larvae of the cestode Taenia solium. It is the leading cause of preventable epilepsy worldwide and therefore constitutes a critical health challenge with significant global relevance. Despite this, much is still unknown about many key pathogenic aspects of the disease, including how cerebral infection with T. solium results in the development of seizures. Over the past century, valuable mechanistic insights have been generated using both clinical studies and animal models. In this review, we critically assess model systems for investigating disease processes in NCC. We explore the respective strengths and weaknesses of each model and summarize how they have contributed to current knowledge of the disease. We call for the continued development of animal models of NCC, with a focus on novel strategies for understanding this debilitating but often neglected disorder.


Assuntos
Modelos Animais de Doenças , Doenças Negligenciadas , Neurocisticercose , Animais , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/parasitologia , Neurocisticercose/epidemiologia , Neurocisticercose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...