Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38766200

RESUMO

Bacteriophages (phages) are viruses that specifically target and kill bacteria, serving as a promising therapeutic to combat multidrug-resistant (MDR) pathogens such as Pseudomonas aeruginosa (Pa). However, delivering adequate concentrations of active phages directly to the infection site over sufficient times to eradicate infections remains an outstanding challenge to phage therapy (PT). Here we present "HydroPhage", a biocompatible hydrogel system for the sustained release of high-titre phages to effectively treat infections caused by MDR pathogens. We develop injectable hydrogels comprised of hyaluronic acid (HA) and polyethylene glycol (PEG) crosslinked through static covalent thioether bonds and hemithioacetal-based dynamic covalent crosslinks (DCC), which encapsulate phages at concentration up to 1011 PFU per mL gel, and achieve sustained release over a week with more than 60% total phage recovery. In a preclinical mouse model of extended wound infection, we demonstrate enhanced bacterial clearance compared to intravenous treatment. Thus, using hydrogels for local and sustained delivery of phage may represent an effective approach to eradicating MDR infections broadly.

2.
Faraday Discuss ; 248(0): 277-297, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37870402

RESUMO

The demand for electric vehicles with extended ranges has created a renaissance of interest in replacing the common metal-ion with higher energy-density metal-anode batteries. However, the potential battery safety issues associated with lithium metal must be addressed to enable lithium metal battery chemistries. A considerable performance gap between lithium (Li) symmetric cells and practical Li batteries motivated us to explore the correlation between the shape of voltage traces and degradation. We coupled impedance spectroscopy and operando NMR and used the new approach to show that transient (i.e., soft) shorts form in realistic conditions for battery applications; however, they are typically overlooked, as their electrochemical signatures are often not distinct. The typical rectangular-shaped voltage trace, widely considered ideal, was proven, under the conditions studied here, to be a result of soft shorts. Recoverable soft-shorted cells were demonstrated during a symmetric cell polarisation experiment, defining a new type of critical current density: the current density at which the soft shorts are not reversible. Moreover, we demonstrated that soft shorts, detected via electrochemical impedance spectroscopy (EIS) and validated via operando NMR, are predictive towards the formation of hard shorts, showing the potential use of EIS as a relatively low-cost and non-destructive method for early detection of catastrophic shorts and battery failure while demonstrating the strength of operando NMR as a research tool for metal plating in lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...