Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 126: 104995, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875502

RESUMO

OBJECTIVES: To evaluate the edge chipping resistance (ReA) and the fracture toughness (KC) of 3Y-TZP bilayers produced with the following materials/processing combinations: fluorapatite glass-ceramic applied on zirconia using the traditional layering and hot-pressing (press-on) techniques; feldspathic porcelain using rapid layer technology (RLT); and lithium disilicate glass-ceramic using CAD-on method. The influence of the cooling rate (slow and fast) was analyzed for layering and hot-pressing. METHODS: Bilayer bars (25x4x2 mm) were made following manufacturers' instructions. The edge chipping test was performed in an universal testing machine, using a coupled Vickers indenter. ReA was calculated dividing the critical load at fracture by the edge distance. Fracture toughness was calculated by a regression fit with a fixed slope of 1.5 correlating the critical chipping load regarding edge distance and also with indentation fracture (IF) method. Data were statistically analyzed using ANOVA and Tukey's test (α = 5%). RESULTS: ReA and KC was significantly higher for the CAD-on bilayers. RLT showed intermediate ReA means, and layering and hot-pressing techniques showed the lowest ReA values. For both processing methods there was no effect of the cooling protocol on the ReA and fracture toughness. CONCLUSIONS: There is a significant effect of the material/processing association on the edge chipping resistance and fracture toughness of the bilayers. There was no effect of the cooling protocol on the edge chipping resistance and fracture toughness for the specimens processed by both the layering and hot-pressing techniques.


Assuntos
Cerâmica , Zircônio , Porcelana Dentária , Análise do Estresse Dentário , Facetas Dentárias , Teste de Materiais , Transição de Fase
2.
Mater Sci Eng C Mater Biol Appl ; 76: 464-471, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482551

RESUMO

Silver phosphate is a semi-conductor sensitive to UV-Vis radiation (<530nm). Exposure to radiation removes electrons from the oxygen valence shell, which are scavenged by silver cations (Ag+), forming metallic silver (Ag0) nanoparticles. The possibility of silver nanoparticle formation in situ by a photoreduction process was the basis for the application of mixed calcium phosphate/silver phosphate particles as remineralizing and antibacterial fillers in resin-based dental materials. Mixed phosphate particles were synthesized, characterized and added to a dimethacrylate resin in 20% or 30% mass fractions to investigate their efficacy as ion-releasing fillers for dental remineralization and antibacterial activity. The formation of metallic silver nanoparticles after exposure to visible radiation from a dental curing unit (peak emission: 470nm) was demonstrated by particle X-ray diffraction and scanning electron microscopy analysis of the composite fractured surface. Calcium and phosphate release from materials containing the mixed particles were similar to those containing pure CaP particles, whereas Streptococcus mutans colonies were reduced by three orders of magnitude in relation to the control, which can be attributed to silver release. As expected, the optical properties of the materials containing mixed phosphate particles were compromised by the presence of silver. Nevertheless, materials containing mixed phosphate particles presented higher fracture strength and elastic modulus than those with pure CaP particles.


Assuntos
Nanopartículas Metálicas , Antibacterianos , Biofilmes , Fosfatos de Cálcio , Fosfatos , Prata , Compostos de Prata
3.
Dent Mater ; 27(12): 1259-66, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21982199

RESUMO

OBJECTIVE: To evaluate the effect of the specimen design on the flexural strength (σ(f)) and failure mode of ceramic structures, testing the hypothesis that the ceramic material under tension controls the mechanical performance of the structure. METHODS: Three ceramics used as framework materials for fixed partial dentures (YZ--Vita In-Ceram YZ; IZ--Vita In-Ceram Zirconia; AL--Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs (n=10): monolithic, two layers (porcelain-framework) and three layers (TRI) (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. For bi-layered design, the specimens were tested in both conditions: with porcelain (PT) or framework ceramic (FT) layer under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy (SEM). Young's modulus (E) and Poisson's ratio (ν) were determined using ultrasonic pulse-echo method. Results were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests. RESULTS: Except for VM7 and VM9, significant differences were observed for E values among the materials. YZ showed the highest ν value followed by IZ and AL. YZ presented the highest σ(f). There was no statistical difference in the σ(f) value between IZ and IZ-FT and between AL and AL-FT. σ(f) values for YZ-PT, IZ-PT, IZ-TRI, AL-PT, AL-TRI were similar to the results obtained for VM7 and VM9. Two types of fracture mode were identified: total and partial failure. SIGNIFICANCE: The mechanical performance of the specimens was determined by the material under tension during testing, confirming the study hypothesis.


Assuntos
Cerâmica/química , Porcelana Dentária/química , Algoritmos , Óxido de Alumínio/química , Silicatos de Alumínio/química , Polimento Dentário , Análise do Estresse Dentário/instrumentação , Facetas Dentárias , Módulo de Elasticidade , Temperatura Alta , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Maleabilidade , Compostos de Potássio/química , Saliva Artificial/química , Estresse Mecânico , Propriedades de Superfície , Temperatura , Ultrassom , Vácuo , Ítrio/química , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA