Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7960): 335-343, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165241

RESUMO

The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.


Assuntos
Centrômero , Cromossomos Humanos , Recombinação Genética , Humanos , Centrômero/genética , Cromossomos Humanos/genética , DNA Ribossômico/genética , Recombinação Genética/genética , Translocação Genética/genética , Citogenética , Telômero/genética
2.
Science ; 376(6588): eabl4178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357911

RESUMO

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.


Assuntos
Centrômero/genética , Mapeamento Cromossômico , Epigênese Genética , Genoma Humano , Evolução Molecular , Genômica , Humanos , Sequências Repetitivas de Ácido Nucleico
3.
Cell Genom ; 1(3)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34993501

RESUMO

Centromeric α-satellite repeats represent ~6% of the human genome, but their length and repetitive nature make sequencing and analysis of those regions challenging. However, centromeres are essential for the stable propagation of chromosomes, so tools are urgently needed to monitor centromere copy number and how it influences chromosome transmission and genome stability. We developed and benchmarked droplet digital PCR (ddPCR) assays that measure copy number for five human centromeric arrays. We applied them to characterize natural variation in centromeric array size, analyzing normal tissue from 37 individuals from China and 39 individuals from the US and UK. Each chromosome-specific array varies in size up to 10-fold across individuals and up to 50-fold across chromosomes, indicating a unique complement of arrays in each individual. We also used the ddPCR assays to analyze centromere copy number in 76 matched tumor-normal samples across four cancer types, representing the most-comprehensive quantitative analysis of centromeric array stability in cancer to date. In contrast to stable transmission in cultured cells, centromeric arrays show gain and loss events in each of the cancer types, suggesting centromeric α-satellite DNA represents a new category of genome instability in cancer. Our methodology for measuring human centromeric-array copy number will advance research on centromeres and genome integrity in normal and disease states.

4.
DNA Res ; 24(4): 377-385, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854689

RESUMO

Repetitive DNAs are abundant fast-evolving components of eukaryotic genomes, which often possess important structural and functional roles. Despite their ubiquity, repetitive DNAs are poorly studied when compared with the genic fraction of genomes. Here, we took advantage of the availability of the sequenced genome of the common marmoset Callithrix jacchus to assess its satellite DNAs (satDNAs) and their distribution in Callitrichini. After clustering analysis of all reads and comparisons by similarity, we identified a satDNA composed by 171 bp motifs, named MarmoSAT, which composes 1.09% of the C. jacchus genome. Fluorescent in situ hybridization on chromosomes of species from the genera Callithrix, Mico and Callimico showed that MarmoSAT had a subtelomeric location. In addition to the common monomeric, we found that MarmoSAT was also organized in higher-order repeats of 338 bp in Callimico goeldii. Our phylogenetic analyses showed that MarmoSAT repeats from C. jacchus lack chromosome-specific features, suggesting exchange events among subterminal regions of non-homologous chromosomes. MarmoSAT is transcribed in several tissues of C. jacchus, with the highest transcription levels in spleen, thymus and heart. The transcription profile and subtelomeric location suggest that MarmoSAT may be involved in the regulation of telomerase and modulation of telomeric chromatin.


Assuntos
Callitrichinae/genética , DNA Satélite , Telômero , Animais , Feminino , Masculino , Filogenia , Análise de Sequência de DNA
5.
Sci Rep ; 7(1): 6422, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743997

RESUMO

Satellite DNAs (satDNAs) constitute large portion of eukaryote genomes, comprising non-protein-coding sequences tandemly repeated. They are mostly found in heterochromatic regions of chromosomes such as around centromere or near telomeres, in intercalary heterochromatin, and often in non-recombining segments of sex chromosomes. We examined the satellitome in the cricket Eneoptera surinamensis (2n = 9, neo-X1X2Y, males) to characterize the molecular evolution of its neo-sex chromosomes. To achieve this, we analyzed illumina reads using graph-based clustering and complementary analyses. We found an unusually high number of 45 families of satDNAs, ranging from 4 bp to 517 bp, accounting for about 14% of the genome and showing different modular structures and high diversity of arrays. FISH mapping revealed that satDNAs are located mostly in C-positive pericentromeric regions of the chromosomes. SatDNAs enrichment was also observed in the neo-sex chromosomes in comparison to autosomes. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. Our results suggest possible involvement of satDNAs in genome increasing and in molecular differentiation of the neo-sex chromosomes in this species, contributing to the understanding of sex chromosome composition and evolution in Orthoptera.


Assuntos
Cromossomos de Insetos , DNA Satélite , Gryllidae/genética , Cromossomo Y , Animais , Mapeamento Cromossômico , Feminino , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Masculino
6.
BMC Genomics ; 16: 376, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962381

RESUMO

BACKGROUND: Species from the Paracoccidioides complex are thermally dimorphic fungi and the causative agents of paracoccidioidomycosis, a deep fungal infection that is the most prevalent systemic mycosis in Latin America and represents the most important cause of death in immunocompetent individuals with systemic mycosis in Brazil. We previously described the identification of eight new families of DNA transposons in Paracoccidioides genomes. In this work, we aimed to identify potentially active retrotransposons in Paracoccidioides genomes. RESULTS: We identified five different retrotransposon families (four LTR-like and one LINE-like element) in the genomes of three Paracoccidioides isolates. Retrotransposons were present in all of the genomes analyzed. P. brasiliensis and P. lutzii species harbored the same retrotransposon lineages but differed in their copy numbers. In the Pb01, Pb03 and Pb18 genomes, the number of LTR retrotransposons was higher than the number of LINE-like elements, and the LINE-like element RtPc5 was transcribed in Paracoccidioides lutzii (Pb01) but could not be detected in P. brasiliensis (Pb03 and Pb18) by semi-quantitative RT-PCR. CONCLUSION: Five new potentially active retrotransposons have been identified in the genomic assemblies of the Paracoccidioides species complex using a combined computational and experimental approach. The distribution across the two known species, P. brasiliensis and P. lutzii, and phylogenetics analysis indicate that these elements could have been acquired before speciation occurred. The presence of active retrotransposons in the genome may have implications regarding the evolution and genetic diversification of the Paracoccidioides genus.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Paracoccidioides/genética , Retroelementos/genética , Análise por Conglomerados , Etiquetas de Sequências Expressas/metabolismo , Genômica , Anotação de Sequência Molecular , Paracoccidioides/classificação , Filogenia , Sequências Repetidas Terminais/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...