Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 5(1): 1092, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241774

RESUMO

Leptin influences eating behavior. Exposure to early adversity is associated with eating behaviour disorders and metabolic syndrome, but the role of the leptin receptor on this relationship is poorly explored. We investigated whether individual differences in brain region specific leptin receptor (LepR) gene networks could moderate the effects of early adversity on eating behavior and metabolism. We created an expression-based polygenic risk score (ePRS) reflecting variations in the function of LepR gene network in prefrontal cortex and hypothalamus to investigate the interactions between a cumulative index of postnatal adversity on eating behavior in two independent birth cohorts (MAVAN and GUSTO). To explore whether variations in the prefrontal cortex or hypothalamic genetic scores could be associated with metabolic measurements, we also assessed the relationship between LepR-ePRS and fasting blood glucose and leptin levels in a third independent cohort (ALSPAC). We identified significant interaction effects between postnatal adversity and prefrontal-based LepR-ePRS on the Child Eating Behavior Questionnaire scores. In MAVAN, we observed a significant interaction effect on food enjoyment at 48 months (ß = 61.58, p = 0.015) and 72 months (ß = 97.78, p = 0.001); food responsiveness at 48 months (ß = 83.79, p = 0.009) satiety at 48 months (ß = -43.63, p = 0.047). Similar results were observed in the GUSTO cohort, with a significant interaction effect on food enjoyment (ß = 30.48, p = 0.006) food fussiness score (ß = -24.07, p = 0.02) and satiety score at 60 months (ß = -17.00, p = 0.037). No effects were found when focusing on the hypothalamus-based LepR-ePRS on eating behavior in MAVAN and GUSTO cohorts, and there was no effect of hypothalamus and prefrontal cortex based ePRSs on metabolic measures in ALSPAC. Our study indicated that exposure to postnatal adversity interacts with prefrontal cortex LepR-ePRS to moderate eating behavior, suggesting a neurobiological mechanism associated with the development of eating behavior problems in response to early adversity. The knowledge of these mechanisms may guide the understanding of eating patterns associated with risk for obesity in response to fluctuations in stress exposure early in life.


Assuntos
Experiências Adversas da Infância , Leptina , Criança , Humanos , Glicemia , Comportamento Alimentar/fisiologia , Redes Reguladoras de Genes , Leptina/genética , Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
3.
Neuroscience ; 497: 282-307, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35525496

RESUMO

Exposure to stressors in early postnatal life induces long-lasting modifications in brain function. This plasticity, an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on the hypothalamic-pituitary-adrenal axis response to stressors, and has been reported to lead to neuroinflammation, altered levels of neurotrophic factors, modifications in neurogenesis and synaptic plasticity, with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory. Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance/persistence or transformation, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Cognição , Roedores , Memória Espacial , Estresse Psicológico
4.
Front Neurosci ; 15: 744743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899157

RESUMO

Background: Previous studies focused on the relationship between prenatal conditions and neurodevelopmental outcomes later in life, but few have explored the interplay between gene co-expression networks and prenatal adversity conditions on cognitive development trajectories and gray matter density. Methods: We analyzed the moderation effects of an expression polygenic score (ePRS) for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association between prenatal adversity and child cognitive development. A score based on genes co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of the association between the individual single nucleotide polymorphisms (SNP) and the BDNF expression in the PFC. Cognitive development trajectories of 157 young children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-II mental scales. Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS, higher prenatal adversity was associated with slower cognitive development in comparison with those exposed to lower prenatal adversity. Parallel-Independent Component Analysis (pICA) suggested that associations of expression-based SNPs and gray matter density significantly differed between low and high prenatal adversity groups. The brain IC included areas involved in visual association processes (Brodmann area 19 and 18), reallocation of attention, and integration of information across the supramodal cortex (Brodmann area 10). Conclusion: Cognitive development trajectories and brain gray matter seem to be influenced by the interplay of prenatal environmental conditions and the expression of an important BDNF gene network that guides the growth and plasticity of neurons and synapses.

5.
Neurobiol Learn Mem ; 185: 107509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454100

RESUMO

During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.


Assuntos
Cognição/fisiologia , Redes Reguladoras de Genes/fisiologia , Córtex Pré-Frontal/metabolismo , Proteína 1 Associada à Membrana da Vesícula/fisiologia , Atenção/fisiologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Neuroimagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Meio Social , Memória Espacial/fisiologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo
6.
Neurosci Lett ; 761: 136104, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34256105

RESUMO

AIMS: Oxandrolone (OXA) is a synthetic steroid used for the treatment of clinical conditions associated with catabolic states in humans, including children. However, its behavioral effects are not well known. Our goal was to evaluate the anxiety-like behavior induced in young adult rats after the treatment of juvenile animals with OXA. METHODS: Four-week-old male rats were separated into three groups: Control (CON), therapeutic-like OXA dose (TD), and excessive OXA dose (ED), in which 2.5 and 37.5 mg/kg/day of OXA were administered via gavage for four weeks for TD and ED, respectively. Behavior was evaluated through the elevated plus maze (EPM) and open field (OF) tests. Protein expression of catalase (CAT), superoxide dismutase (SOD), Tumor necrosis factor-α (TNF-α), and dopamine receptor 2 (DrD2) were analyzed in tissue samples of the hippocampus, amygdala, and prefrontal cortex by Western Blot. RESULTS: OXA induced anxiety-like behaviors in both TD and ED animals; it decreased the time spent in the open arms of the EPM in both groups and reduced the time spent in the central zone of the OF in the TD group. In the hippocampus, CAT expression was higher in TD compared with both control and ED animals. No differences were found in the amygdala and prefrontal cortex. TNF-α, SOD, and DrD2 levels were not altered in any of the assessed areas. CONCLUSIONS: Treatment of juvenile rats with OXA led to anxiety-like behavior in young adult animals regardless of the dose used, with minor changes in the antioxidant machinery located in the hippocampus.


Assuntos
Anabolizantes/toxicidade , Ansiedade/etiologia , Hipocampo/efeitos dos fármacos , Oxandrolona/toxicidade , Anabolizantes/administração & dosagem , Animais , Catalase/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Oxandrolona/administração & dosagem , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Adv Food Nutr Res ; 97: 237-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34311901

RESUMO

Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.


Assuntos
Experiências Adversas da Infância , Ingestão de Alimentos , Comportamento Alimentar , Alimentos , Homeostase , Humanos , Recompensa
8.
Neurotoxicol Teratol ; 82: 106929, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031921

RESUMO

Acute organophosphate (OP) poisoning, particularly by suicide attempts, generates high mortality and morbidity. Few studies have systematically addressed the consequences of acute OP intoxication on cognition and memory of survivors. Preclinical evidence suggests that acute OP-induced effects are associated with inhibiting the brain acetylcholinesterase (AChE) enzyme. The OP triazophos has been used worldwide, although its effects on mnemonic processing are yet to be investigated. Based on the above, the present study investigated whether acute triazophos intoxication interferes with the expression and extinction of contextual fear memory in rats. Hippocampal and amygdalar AChE activity and plasma butyrylcholinesterase (BChE) were measured at the end of the experiment to confirm the cholinergic overstimulation. Independent cohorts of animals intoxicated with triazophos were evaluated in the novel object recognition (NOR) test, a less aversive associative memory task. At the dose of 15 mg/kg, triazophos administered immediately after contextual fear conditioning impaired the extinction but not the expression of freezing behavior. Triazophos poisoning induced no changes in the discrimination index in the NOR test. Triazophos inhibited the AChE activity in a time- and brain region-dependent manner. Our findings suggest that fear memory extinction deficits induced by acute triazophos intoxication are accompanied by hippocampal AChE inhibition. The deficient fear extinction associated with acute OP poisoning may represent a behavioral and biochemical phenotype helpful to study mechanisms of neurotoxicity and treatment approach of OP suicide survivors.


Assuntos
Inibidores da Colinesterase/toxicidade , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Organofosfatos/toxicidade , Organotiofosfatos/toxicidade , Triazóis/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Condicionamento Clássico/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Ratos , Ratos Wistar
9.
Front Neurosci ; 14: 198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256307

RESUMO

Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.

10.
Behav Brain Res ; 379: 112399, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31790781

RESUMO

Early life experiences have strong influences on brain programming and can affect eating behavior control and body weight later in life. However, there is no consensus about the relationship between neonatal stress and feeding behavior. We evaluated whether maternal deprivation (MD) and maternal separation (MS) alter body weight and appetite using standard rat chow consumption and palatable food. Also, we evaluated anxiety and the expression of the leptin receptor, neuropeptides POMC, CART, NPY in the hypothalamus, as well as the serotoninergic system in the amygdala and hypothalamus as possible modulators of these behaviors. We found a decrease in standard rat chow consumption in MD. However, both neonatal stress protocols increased the consumption of palatable food and led to anxiogenic behavior in male animals. MD led to decreased hypothalamic POMC levels in adult males. Serotonin in the hypothalamus was decreased by both stress models in males and females. In the amygdala, MS decreased serotonin levels while MD increased its metabolite levels. We observed that males are more vulnerable and females are more resilient to the effects of neonatal stress on anxiety-like behavior, as well as on food consumption and on the central changes observed. These data together add support to the concept that the early environment contributes to the development of eating disorders later in life.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Privação Materna , Pró-Opiomelanocortina/metabolismo , Serotonina/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Animais Recém-Nascidos , Ansiedade , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Ratos Wistar , Receptores para Leptina/metabolismo , Resiliência Psicológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...