Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(26): 264801, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231672

RESUMO

We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

2.
Microsc Microanal ; 15(4): 282-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19575829

RESUMO

Ultrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, implying an increase in brightness by orders of magnitude. We investigate a setup consisting of an ultracold electron source and standard radio-frequency acceleration techniques by GPT tracking simulations. The simulations use realistic fields and include all pairwise Coulomb interactions. We show that in this setup 120 keV, 0.1 pC electron bunches can be produced with a longitudinal emittance sufficiently small for enabling sub-100 fs bunch lengths at 1% relative energy spread. A transverse root-mean-square normalized emittance of epsilon(x) = 10 nm is obtained, significantly better than from photoemission sources. Correlations in transverse phase-space indicate that the transverse emittance can be improved even further, enabling single-shot studies of biomolecular samples.

3.
Phys Rev Lett ; 93(9): 094802, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15447108

RESUMO

Uniform three-dimensional ellipsoidal distributions of charge are the ultimate goal in charged particle accelerator physics because of their linear internal force fields. Such bunches remain ellipsoidal with perfectly linear position-momentum phase space correlations in any linear transport system. We present a method, based on photoemission by radially shaped femtosecond laser pulses, to actually produce such bunches.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(4 Pt 2B): 046501, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12006036

RESUMO

Nonlinear space-charge effects play an important role in emittance growth in the production of kA electron bunches with a bunch length much smaller than the bunch diameter. We propose a scheme employing the radial third-order component of an electrostatic acceleration field, to fully compensate the nonlinear space-charge effects. This results in minimal transverse root-mean-square emittance. The principle is demonstrated using our design simulations of a device for the production of high-quality, high-current, subpicosecond electron bunches using electrostatic acceleration in a 1 GV/m field. Simulations using the GPT code produce a bunch of 100 pC and 73 fs full width at half maximum pulse width, resulting in a peak current of about 1.2 kA at an energy of 2 MeV. The compensation scheme reduces the root-mean-square emittance by 34% to 0.4pi mm mrad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA