Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36018884

RESUMO

The Sf9 cell line, originally isolated from the ovarian tissue of Spodoptera frugiperda larvae, is widely used in academia and industry for the baculovirus-mediated production of recombinant proteins and virus-like particles. RNA interference (RNAi) is a conserved antiviral pathway present in eukaryotic organisms and is the primary antiviral defence mechanism in insects. Recent evidence has implicated RNAi as an antiviral response to baculovirus infection in Sf9 cells. To test this hypothesis, CRISPR/Cas9 technology was used to disable the RNAi pathway in Sf9 cells by knocking out Dicer-2, the protein responsible for cleaving viral double-stranded RNA precursors into short interfering RNAs. Infection of Dicer-2 knockout Sf9 cells with either the wild-type baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV), recombinant AcMNPV (rAcMNPV) expressing ß-galactosidase (ß-gal), or rAcMNPV expressing a wasp venom protein (Vn50) at a multiplicity of infection (m.o.i.) of 1 resulted in a modest increase in virus replication compared to control Sf9 cells under adherent culture conditions. In contrast, Dicer-2 knockout Sf9 monolayer or suspension cultures infected by the rAcMNPV expressing ß-gal at higher m.o.i.s (3.5 and 20) did not exhibit increases in either viral DNA replication or ß-gal production. Intriguingly, during long-term passaging in suspension, Dicer-2 knockout Sf9 cultures underwent transient crashes in cell proliferation and viability. It was discovered that these periods of low growth and viability coincided with a dramatic increase in the RNA levels of S. frugiperda rhabdovirus, a recently identified adventitious virus that persistently infects the Sf9 cell line, suggesting a role for Dicer-2 in managing chronic viral infections in this industrially relevant insect cell line.


Assuntos
Baculoviridae , Rhabdoviridae , Animais , Antivirais , Linhagem Celular , Replicação do DNA , DNA Viral , Nucleopoliedrovírus , Células Sf9 , Spodoptera , Replicação Viral
2.
Biotechnol J ; 17(7): e2100532, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35384325

RESUMO

The Sf9 cell line, originally isolated from the insect Spodoptera frugiperda, is commonly used alongside the baculovirus expression vector system (BEVS) to produce recombinant proteins and other biologics. As more BEVS-derived vaccines and therapeutics are approved by regulators and manufactured at scale, there is increasing interest in improving the Sf9 cell line to improve bioprocess robustness and increase product yields. CRISPR-Cas9 is a powerful genome-editing tool with great potential to improve cell line characteristics. Nevertheless, reports of genome-editing in Sf9 cells are scarce, and targets for engineering are elusive. To evaluate the effectiveness of CRISPR-Cas9 to improve BEVS yields, we generated Sf9 cell lines with functional knockouts in the Sf-Caspase-1 gene, which encodes an effector caspase involved in the execution of apoptosis. Deletion of Sf-Caspase-1 abolished the hallmarks of apoptotic cell death including plasma membrane blebbing and effector caspase activity. Following infection of Sf-Caspase-1 knockout Sf9 cultures with a recombinant baculovirus expressing ß-galactosidase, we did not observe any differences in cell death kinetics or increases in productivity. Similar results were obtained when Sf-Caspase-1 expression was suppressed via RNA interference. We anticipate that the CRISPR-Cas9 workflow reported here will spur future efforts to rationally engineer Sf9 cells for improved baculovirus expression.


Assuntos
Baculoviridae , Caspases , Animais , Apoptose/genética , Baculoviridae/genética , Caspase 1/metabolismo , Caspases/metabolismo , Caspases Efetoras , Linhagem Celular , Células Sf9
3.
Virology ; 563: 82-87, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492433

RESUMO

The endosymbiotic bacterium Wolbachia pipientis confers RNA virus refractoriness in Drosophila and Aedes mosquitoes. Questions remain about the Wolbachia-virus restriction phenotype and how extensive this phenomenon may be within other arthropods. Here, we generated two Spodoptera frugiperda cell lines stably transinfected with two strains of Wolbachia, wAlbB and wMelPop-CLA. Despite the high density of Wolbachia in stably infected Sf9 cells, RT-PCR indicated the presence of the negative-sense RNA virus Spodoptera frugiperda rhabdovirus (SfRV) in Wolbachia-infected and uninfected cell lines. No differences in the replication of SfRV between Sf9 and Wolbachia-infected cells was found. RNA-Seq analysis of the parental Sf9 cells supported SfRV's presence in these cells with abundant 20 nt virus-derived small RNAs indicating active replication of SfRV in these cells. Overall, this study supports a growing body of evidence that Wolbachia does not restrict negative-sense RNA viruses and generates an in vitro model to examine Lepidoptera-Wolbachia virus interactions.


Assuntos
Rhabdoviridae/fisiologia , Spodoptera/virologia , Wolbachia/fisiologia , Animais , Linhagem Celular , Genoma Viral , Interações Hospedeiro-Patógeno , Interferência de RNA , RNA Viral , Wolbachia/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...