Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 53: 102342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605453

RESUMO

Type 2 diabetes is a chronic metabolic disease that affects mitochondrial function. In this context, the rescue mechanisms of mitochondrial health, such as mitophagy and mitochondrial biogenesis, are of crucial importance. The gold standard for the treatment of type 2 diabetes is metformin, which has a beneficial impact on the mitochondrial metabolism. In this study, we set out to describe the effect of metformin treatment on mitochondrial function and mitophagy in peripheral blood mononuclear cells (PBMCs) from type 2 diabetic patients. We performed a preliminary cross-sectional observational study complying with CONSORT requirements, for which we recruited 242 subjects, divided into 101 healthy volunteers, 93 metformin-treated type 2 diabetic patients and 48 non-metformin-treated type 2 diabetic patients. Mitochondria from the type 2 diabetic patients not treated with metformin displayed more reactive oxygen species (ROS) than those from healthy or metformin-treated subjects. Protein expression of the electron transport chain (ETC) complexes was lower in PBMCs from type 2 diabetic patients without metformin treatment than in those from the other two groups. Mitophagy was altered in type 2 diabetic patients, evident in a decrease in the protein levels of PINK1 and Parkin in parallel to that of the mitochondrial biogenesis protein PGC1α, both of which effects were reversed by metformin. Analysis of AMPK phosphorylation revealed that its activation was decreased in the PBMCs of type 2 diabetic patients, an effect which was reversed, once again, by metformin. In addition, there was an increase in the serum levels of TNFα and IL-6 in type 2 diabetic patients and this was reversed with metformin treatment. These results demonstrate that metformin improves mitochondrial function, restores the levels of ETC complexes, and enhances AMPK activation and mitophagy, suggesting beneficial clinical implications in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo
2.
World J Mens Health ; 40(3): 399-411, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35021300

RESUMO

Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphology, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reactive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to ß-cell dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.

3.
Antioxidants (Basel) ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069422

RESUMO

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing ß-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19-24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.

4.
Antioxid Redox Signal ; 35(5): 377-385, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-33559513

RESUMO

Metformin is an effective drug against type 2 diabetes (T2D), a pathogenesis in which mitochondrial dysfunction is one of the main players. Thus, our first aim was to describe the effect of metformin on mitochondrial function in an outpatient population with T2D. For analyzing this hypothesis, we performed a preliminary cross-sectional study complying with the STROBE requirements. We studied leukocytes from 139 healthy controls, 39 T2D patients without metformin treatment, and 81 T2D patients who had been on said treatment for at least 1 year. Leukocytes from T2D patients displayed higher total and mitochondrial reactive oxygen species levels, lower mitochondrial membrane potential, and lower oxygen consumption. Moreover, their mitochondria expressed lower mRNA and protein levels of fusion proteins mitofusin-1 (MFN1), mitofusin-2 (MFN2), and optic atrophy 1 (OPA1), and higher protein and gene expression levels of mitochondrial fission protein 1 (FIS1) and dynamin-related protein 1 (DRP-1). In addition, we observed enhanced leukocyte/endothelial interactions in T2D patients. Metformin reversed most of these effects, ameliorating mitochondrial function and dynamics, and reducing the leukocyte/endothelial interactions observed in T2D patients. These results raise the question of whether metformin tackles T2D by improving mitochondrial dysfunction and regulating mitochondrial dynamics. Furthermore, it would seem that metformin modulates the alteration of interactions between leukocytes and the endothelium, a subclinical marker of early atherosclerosis. Antioxid. Redox Signal. 35, 377-385.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
5.
Antioxidants (Basel) ; 9(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322742

RESUMO

Obesity and its related disorders, such as diabetes and cardiovascular risk, represent an emerging global health issue. Even though genetic factors seem to be the primary actors in the development and progression of these diseases, dietary choices also appear to be of crucial importance. A healthy diet combined with physical activity have been shown to ameliorate glycaemic levels and insulin sensitivity, reduce body weight and the risk of chronic diseases, and contribute to an overall improvement in quality of life. Among nutrients, phytosterols have become the focus of growing attention as novel functional foods in the management of metabolic disorders. Phytosterols are natural plant compounds belonging to the triterpene family and are structurally similar to cholesterol. They are known for their cholesterol-lowering effects, anti-inflammatory and antioxidant properties, and the benefits they offer to the immune system. The present review aims to provide an overview of these bioactive compounds and their therapeutic potential in the fields of obesity and metabolic disorders, with special attention given to oxidative stress, inflammatory status, and gut dysbiosis, all common features of the aforementioned diseases.

6.
Antioxidants (Basel) ; 9(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796678

RESUMO

Little is known about the mechanisms underlying the cardioprotective effect of Roux en-Y gastric bypass (RYGB) surgery. Therefore, the aim of the present study was to investigate whether weight loss associated with RYGB improves the oxidative status of leukocytes and ameliorates subclinical atherosclerotic markers. This is an interventional study of 57 obese subjects who underwent RYGB surgery. We determined biochemical parameters and qualitative analysis of cholesterol, leukocyte and systemic oxidative stress markers -superoxide production, glutathione peroxidase 1 (GPX1), superoxide dismutase (SOD) activity and protein carbonylation-, soluble cellular adhesion molecules -sICAM-1 and sP-selectin-, myeloperoxidase (MPO) and leukocyte-endothelium cell interactions-rolling flux, velocity and adhesion. RYGB induced an improvement in metabolic parameters, including hsCRP and leukocyte count (p < 0.001, for both). This was associated with an amelioration in oxidative stress, since superoxide production and protein carbonylation were reduced (p < 0.05 and p < 0.01, respectively) and antioxidant systems were enhanced (GPX1; p < 0.05 and SOD; p < 0.01). In addition, a significant reduction of the following parameters was observed one year after RYGB: MPO and sICAM (p < 0.05, for both), sPselectin and pattern B of LDL particles (p < 0.001, for both), and rolling flux and adhesion of leukocytes (p < 0.05 and p < 0.01, respectively). Our results suggest that patients undergoing RYGB benefit from an amelioration of the prooxidant status of leukocytes, metabolic outcomes, and subclinical markers of atherosclerosis.

7.
Redox Biol ; 34: 101563, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32416353

RESUMO

Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this study, we hypothesized that polymorphonuclear leukocytes (PMN)-endothelium interactions and autophagy are associated. We evaluated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 diabetic patients and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower rolling velocity (p < 0.001), higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to higher levels of total (p < 0.05) and mitochondrial ROS (p < 0.05). When the protein expression of autophagy markers was analysed, an increase of Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 0.01) and LC3II/LC3I ratio (p < 0.05) was observed. Several correlations between ROS and leukocyte-endothelium parameters were found. Interestingly, in control subjects, an increase of Beclin-1 levels was accompanied by a decrease in the number of rolling (r = 0.561) and adhering PMNs (r = 0.560) and a rise in the velocity of the rolling PMNs (r = 0.593). In contrast, in the type 2 diabetic population, a rise in Beclin-1 levels was related to an increase in the number of rolling (r = 0.437), and adhering PMNs (r = 0.467). These results support the hypothesis that PMN-endothelium interactions, ROS levels and formation of autophagosomes, especially Beclin-1 levels, are enhanced in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Neutrófilos , Autofagia , Proteína Beclina-1/genética , Estudos de Casos e Controles , Adesão Celular , Endotélio , Humanos , Espécies Reativas de Oxigênio
8.
Nutr J ; 18(1): 89, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878925

RESUMO

BACKGROUND: The aim of this study was to evaluate markers of inflammation, oxidative stress and endothelial function in a disease-related malnutrition (DRM) outpatient population. METHODS: For this cross-sectional study, a total of 83 subjects were included and clustered in 3 groups: 34 with normonutrition (NN), 21 with DRM without inflammation (DRM-I) and 28 with DRM and inflammation (DRM + I). Nutritional diagnosis was conducted for all subjects according to ASPEN. Biochemical parameters, proinflammatory cytokines, reactive oxygen species production, glutathione, mitochondrial membrane potential, oxygen consumption, adhesion molecules and leukocyte-endothelium interactions were evaluated. RESULTS: DRM + I patients showed lower albumin, prealbumin, transferrin, and retinol-binding protein levels with respect to the NN group (p < 0.05), differences that were less noticeable in the DRM-I group. DRM + I was associated with a significant increase in hsCRP and IL6 vs the NN and DRM-I groups, and TNFα was increased in both DRM vs NN. DRM was characterised by increased oxidative stress, which was marked by a significant increase in ROS levels and a decrease in mitochondrial membrane potential in the DRM + I group. An evident reduction in mitochondrial oxygen consumption and glutathione concentration was observed in both DRM groups, and was accompanied by increased leukocyte adhesion and adhesion molecules and decreased rolling velocity in the DRM + I group. Furthermore, percentage of weight loss was negatively correlated with albumin, prealbumin, transferrin, O2 consumption, glutathione and leukocyte rolling velocity, and positively correlated with hsCRP, IL6, TNFα, ROS, leukocyte adhesion, and VCAM-1. CONCLUSIONS: Our results show that DRM is associated with oxidative stress and an inflammatory state, with a deterioration of endothelial dysfunction in the DRM + I population.


Assuntos
Leucócitos/fisiologia , Desnutrição/sangue , Desnutrição/complicações , Mitocôndrias/fisiologia , Estresse Oxidativo , Idoso , Adesão Celular , Estudos Transversais , Citocinas/sangue , Feminino , Glutationa/sangue , Humanos , Inflamação/sangue , Inflamação/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Oxigênio/sangue , Espécies Reativas de Oxigênio/sangue , Espanha
9.
Nutrients ; 11(8)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398886

RESUMO

Cellular pathways such as inflammation or oxidative stress are the cause and triggers of disease-related malnutrition (DRM), but the influence of these markers on endoplasmic reticulum (ER) stress is unknown. The objective of this study was to analyze the relationship between mitochondrial function and ER stress parameters in a DRM population. The study population was composed of 82 outpatient subjects, of whom 45 were diagnosed with DRM and 37 were confirmed to be normonourished according to the American Society for Parenteral and Enteral Nutrition ASPEN criteria. We evaluated anthropometrical and biochemical parameters, pro-inflammatory cytokines in serum. Oxidative and ER stress markers were analyzed in leukocytes. DRM patients showed significant reductions in albumin and transferrin concerning the normonourished group, and also displayed higher levels of hsCRP, IL6, and TNFα, and the soluble adhesion molecules VCAM-1 and ICAM-1. Besides, oxygen consumption and mitochondrial membrane potential were reduced and Radical Oxygen Species ROS production was enhanced in DRM patients. In the case of ER markers, protein and mRNA expression revealed that CHOP, ATF6, and the P-eIF2α signal were enhanced in malnourished patients compared to control subjects. Correlation studies supported a relationship between weight loss and increased inflammation, mitochondrial dysfunction, and compromised function of the ER. Our results demonstrate that ER stress signaling pathways are influenced by inflammation and mitochondrial function in the leukocytes of a DRM population.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/fisiologia , Leucócitos/fisiologia , Desnutrição/fisiopatologia , Estresse Oxidativo/fisiologia , Adulto , Idoso , Antropometria , Citocinas/sangue , Feminino , Humanos , Masculino , Desnutrição/sangue , Desnutrição/etiologia , Pessoa de Meia-Idade , Estado Nutricional/fisiologia , Pacientes Ambulatoriais
10.
J Clin Med ; 8(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466264

RESUMO

Mitochondrial dysfunction has been shown to play a central role in the pathophysiology of type 2 diabetes (T2D), and mitochondria-targeted agents such as SS-31 are emerging as a promising strategy for its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by evaluating oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Sixty-one T2D patients and 53 controls were included. Anthropometric and analytical measurements were performed. We also assessed reactive oxygen species (ROS) production, calcium content, the expression of ER stress markers GRP78, CHOP, P-eIF2α, and autophagy-related proteins Beclin1, LC3 II/I, and p62 in leukocytes from T2D and control subjects treated or not with SS-31. Furthermore, we have evaluated the action of SS-31 on leukocyte-endothelium interactions. T2D patients exhibited elevated ROS concentration, calcium levels and presence of ER markers (GRP78 and CHOP gene expression, and GRP78 and P-eIF2α protein expression), all of which were reduced by SS-31 treatment. SS-31 also led to a drop in BECN1 gene expression, and Beclin1 and LC3 II/I protein expression in T2D patients. In contrast, the T2D group displayed reduced p62 protein levels that were restored by SS-31. SS-20 (with non-antioxidant activity) did not change any analyzed parameter. In addition, SS-31 decreased rolling flux and leukocyte adhesion, and increased rolling velocity in T2D patients. Our findings suggest that SS-31 exerts potentially beneficial effects on leukocytes of T2D patients modulating oxidative stress and autophagy, and ameliorating ER stress.

11.
Mol Metab ; 19: 24-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385096

RESUMO

OBJECTIVE: In obese patients undergoing caloric restriction, there are several potential mechanisms involved in the improvement of metabolic outcomes. The present study further explores whether caloric restriction can modulate endoplasmic reticulum (ER) stress and mitochondrial function, as both are known to be mechanisms underlying inflammation and insulin resistance (IR) during obesity. METHODS: A total of 64 obese patients with BMI ≥35 kg/m2 underwent a dietary program consisting of 6 weeks of a very-low-calorie diet followed by 18 weeks of low-calorie diet. We evaluated changes in the metabolic and inflammatory markers -TNFα, hsCRP, complement component 3 (C3c), and retinol binding protein 4 (RBP4)-, in the ER stress markers and modulators -eIF2α-P, sXBP1, ATF6, JNK-P, CHOP, GRP78, and SIRT1-, and in mitochondrial function parameters -mitochondrial reactive oxygen species (mROS), glutathione peroxidase 1 (GPX1), cytosolic Ca2+, and mitochondrial membrane potential. RESULTS: The dietary intervention produced an 8.85% weight loss associated with enhanced insulin sensitivity, a less marked atherogenic lipid profile, and a decrease in systemic inflammation (TNFα, hsCRP) and adipokine levels (RBP4 and C3c). Chronic ER stress was significantly reduced (ATF6-CHOP, JNK-P) and expression levels of SIRT1 and GRP78 - a Ca2+-dependent chaperone - were increased and accompanied by the restoration of Ca2+ depots. Furthermore, mROS production and mitochondrial membrane potential improvement were associated with the up-regulation of the antioxidant enzyme GPX1. CONCLUSIONS: Our data provide evidence that moderate weight loss attenuates systemic inflammation and IR and promotes the amelioration of ER stress and mitochondrial dysfunction, increasing the expression of chaperones, SIRT1 and antioxidant GPX1.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Mitocôndrias/metabolismo , Obesidade/metabolismo , Adulto , Proteína C-Reativa , Restrição Calórica/métodos , Complemento C3 , Chaperona BiP do Retículo Endoplasmático , Feminino , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio , Proteínas Plasmáticas de Ligação ao Retinol , Sirtuína 1/metabolismo , Espanha , Fator de Necrose Tumoral alfa , Redução de Peso/fisiologia , Glutationa Peroxidase GPX1
12.
Sci Rep ; 8(1): 15862, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367115

RESUMO

There is growing focus on mitochondrial impairment and cardiovascular diseases (CVD) in type 2 diabetes (T2D), and the development of novel therapeutic strategies in this context. It is unknown whether mitochondrial-targeting antioxidants such as SS-31 protect sufficiently against oxidative damage in diabetes. We aimed to evaluate if SS-31 modulates SIRT1 levels and ameliorates leukocyte-endothelium interactions, oxidative stress and inflammation in T2D patients. Anthropometric and metabolic parameters were studied in 51 T2D patients and 57 controls. Production of mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential, glutathione content, leukocyte-endothelium interactions, NFκB-p65, TNFα and SIRT1 levels was measured in leukocytes treated or not with SS-31. We observed increased mitochondrial ROS production that was restored by SS-31 treatment. SS-31 also increased mitochondrial membrane potential, glutathione content, SIRT1 levels and leukocyte rolling velocity and reduced rolling flux and adhesion in T2D patients. NFκB-p65 and TNFα, which were enhanced in diabetic patients, were also reduced by SS-31 treatment. Our results reveal that SS-31 exerts beneficial effects on the leukocytes of T2D patients by reducing oxidative stress, leukocyte-endothelium interactions, NFκB and TNFα and by increasing SIRT1 levels. These actions support its use as a potential agent against CVD risk.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Tipo 2/patologia , Leucócitos/metabolismo , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Idoso , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/prevenção & controle , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Clin Nutr ; 37(6 Pt A): 2036-2044, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29042127

RESUMO

BACKGROUND & AIMS: It is known that pinitol acts as a mediator of the insulin-signaling pathway, though little is known about its anti-inflammatory effect in human obesity. Therefore, this study aimed to evaluate the effect of pinitol on peripheral blood mononuclear cells (PBMCs) and visceral (VAT) and subcutaneous adipose tissues (SAT), focusing on the involvement of endoplasmic reticulum (ER) stress and sirtuin 1 (SIRT1). METHODS: In the intervention study, thirteen obese subjects consumed a pinitol-enriched beverage (PEB) for 12 weeks. In the ex vivo study, a biopsy of VAT and SAT was removed from thirty-four obese patients and incubated with D-pinitol for 48 h. RESULTS: The consumption of a PEB reduced circulating levels of IL6 and TNFα and increased SIRT1 protein expression in PBMCs. Ex vivo experiments showed a decline in gene expression and protein levels of IL6 and TNFα in SAT and a reduction in ER stress parameters (ATF6 and CHOP), while VAT markers remained unaltered. Differential gene expression profiles revealed an up-regulation of SIRT1 and insulin-signaling pathways in SAT with respect to VAT. CONCLUSIONS: Our results suggests that pinitol down-regulates the inflammatory pathway which may lead to novel treatment options for obesity and its metabolic disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/sangue , Inositol/análogos & derivados , Obesidade/imunologia , Sirtuína 1/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Adulto , Idoso , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Inflamação/metabolismo , Inositol/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo
14.
Free Radic Biol Med ; 108: 155-162, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28359952

RESUMO

INTRODUCTION: Low testosterone levels in men are associated with type 2 diabetes and cardiovascular risk. However, the role of testosterone in mitochondrial function and leukocyte-endothelium interactions is unknown. Our aim was to evaluate the relationship between testosterone levels, metabolic parameters, oxidative stress, mitochondrial function, inflammation and leukocyte-endothelium interactions in type 2 diabetic patients. MATERIALS AND METHODS: The study was performed in 280 male type 2 diabetic patients and 50 control subjects. Anthropometric and metabolic parameters, testosterone levels, reactive oxygen species (ROS) production, mitochondrial membrane potential, TNFα, adhesion molecules and leukocyte-endothelium cell interactions were evaluated. RESULTS: Testosterone levels were lower in diabetic patients. Total and mitochondrial ROS were increased and mitochondrial membrane potential, SOD and GSR expression levels were reduced in diabetic patients. TNFα, ICAM-1 and VCAM-1 levels, leukocyte rolling flux and adhesion were all enhanced in diabetic patients, while rolling velocity was reduced. Testosterone levels correlated negatively with glucose, HOMA-IR, HbA1c, triglycerides, nonHDL-c, ApoB, hs-CRP and AIP, and positively with HDL-c and ApoA1. The multivariable regression model showed that HDL-c, HOMA-IR and age were independently associated with testosterone. Furthermore, testosterone levels correlated positively with membrane potential and rolling velocity and negatively with ROS production, VCAM-1, rolling flux and adhesion. CONCLUSIONS: Our data highlight that low testosterone levels in diabetic men are related to impaired metabolic profile and mitochondrial function and enhanced inflammation and leukocyte-endothelium cell interaction, which leaves said patients at risk of cardiovascular events.


Assuntos
Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Leucócitos/fisiologia , Mitocôndrias/metabolismo , Testosterona/metabolismo , Adulto , Aterosclerose/complicações , Aterosclerose/diagnóstico , Biomarcadores/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Risco , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...