RESUMO
Chronic metabolic alterations may represent a risk factor for the development of cognitive impairment, dementia, or neurodegenerative diseases. Hyperglycemia and obesity are known to imprint epigenetic markers that compromise the proper expression of cell survival genes. Here, we showed that chronic hyperglycemia (60 days) induced by a single intraperitoneal injection of streptozotocin compromised cognition by reducing hippocampal ERK signaling and by inducing neurotoxicity in rats. The mechanisms appear to be linked to reduced active DNA demethylation and diminished expression of the neuroprotective transcription factor REST. The impact of the relationship between adiposity and DNA hypermethylation on REST expression was also demonstrated in peripheral blood mononuclear cells in obese children with reduced levels of blood ascorbate. The reversible nature of epigenetic modifications and the cognitive impairment reported in obese children, adolescents, and adults suggest that the correction of the anthropometry and the peripheral metabolic alterations would protect brain homeostasis and reduce the risk of developing neurodegenerative diseases.
Assuntos
Transtornos Cognitivos/etiologia , Diabetes Mellitus Experimental/complicações , Hipocampo/metabolismo , Hiperglicemia/complicações , Proteínas Repressoras/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Metilação de DNA , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Aprendizagem em Labirinto/fisiologia , Ratos , Proteínas Repressoras/genéticaRESUMO
Large scale clinical trials have demonstrated that an intensive antihyperglycemic treatment in diabetes mellitus (DM) in individuals reduces the incidence of micro- and macrovascular complications, e.g. nephropathy, retinopathy, DM-accelerated atherosclerosis, myocardial infarction, or limb amputations. Here, we investigated the effect of short- and long-term insulin administration on mitochondrial function in peripheral tissues of streptozotocin (STZ)-induced hyperglycemic rats. In addition, the in vitro effect of methylglyoxal (MG), advanced glycation end products (AGEs) and human diabetic plasma on mitochondrial activity was investigated in skeletal muscle and liver mitochondria and in rat skin primary fibroblasts. Hyperglycemic STZ rats showed tissue-specific patterns of energy deficiency, evidenced by reduced activities of complexes I, II and/or IV after 30 days of hyperglycemia in heart, skeletal muscle and liver; moreover, cardiac tissue was found to be the most sensitive to the diabetic condition, since energy metabolism was impaired after 10 days of the hyperglycemia. Insulin-induced tight glycemic control was effective in protecting against the hyperglycemia-induced inhibition of mitochondrial enzyme activities. Furthermore, the long-term hormone replacement (30 days) also increased these activities in kidney from STZ-treated animals, where the hyperglycemic state did not modify the electron transport activity. Results from in vitro experiments indicate that mitochondrial impairment could result from oxidative stress-induced accumulation of MG and/or AGEs. Further investigations demonstrated that human plasma AGE accumulation elicits reduced mitochondrial function in skin fibroblast. These data suggest that persistent hyperglycemia results in tissue-specific patterns of energy deficiency and that early and continuous insulin therapy is necessary to maintain proper mitochondrial metabolism.