Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Altern Lab Anim ; 46(1): 23-37, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29553795

RESUMO

The need for alternatives to animal use in pyrogen testing has been driven by the Three Rs concept. This has resulted in the inclusion of the monocyte activation test (MAT) in the European Pharmacopoeia, 2010. However, some technical and regulatory obstacles must be overcome to ensure the effective implementation of the MAT by the industry, especially for the testing of biological products. The yellow fever (YF) vaccine (17DD-YFV) was chosen for evaluation in this study, in view of: a) the 2016-2018 outbreak of YF in Brazil; b) the increase in demand for 17DD-YFV doses; c) the complex production process with live attenuated virus; d) the presence of possible test interference factors, such as residual process components (e.g. ovalbumin); and e) the need for the investigation of other pyrogens that are not detectable by the methods prescribed in the YF vaccine monograph. The product-specific testing was carried out by using cryopreserved and fresh whole blood, and IL-6 and IL-1ß levels were used as the marker readouts. After assessing the applicability of the MAT on a 1:10 dilution of 17DD-YFV, endotoxin and non-endotoxin pyrogens were quantified in spiked batches, by using the lipopolysaccharide and lipoteichoic acid standards, respectively. The quantitative analysis demonstrated the correlation between the MAT and the Limulus amoebocyte lysate (LAL) assays, with respect to the limits of endotoxin recovery in spiked batches and the detection of no pyrogenic contamination in commercial batches of 17DD-YFV. The data demonstrated the applicability of the MAT for 17DD-YFV pyrogen testing, and as an alternative method that can contribute to biological quality control studies.


Assuntos
Alternativas aos Testes com Animais , Monócitos/efeitos dos fármacos , Pirogênios/análise , Controle de Qualidade , Vacina contra Febre Amarela/normas , Animais , Humanos , Interleucina-1beta/sangue , Interleucina-6/sangue , Teste do Limulus , Lipopolissacarídeos/análise , Monócitos/imunologia
2.
Mem Inst Oswaldo Cruz ; 107 Suppl 1: 156-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23283467

RESUMO

Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves, presenting a singular clinical picture. Across the leprosy spectrum, lepromatous leprosy (LL) exhibits a classical hallmark: the presence of a collection of M. leprae-infected foamy macrophages/Schwann cells characterised by their high lipid content. The significance of this foamy aspect in mycobacterial infections has garnered renewed attention in leprosy due to the recent observation that the foamy aspect represents cells enriched in lipid droplets (LD) (also known as lipid bodies). Here, we discuss the contemporary view of LD as highly regulated organelles with key functions in M. leprae persistence in the LL end of the spectrum. The modern methods of studying this ancient disease have contributed to recent findings that describe M. leprae-triggered LD biogenesis and recruitment as effective mycobacterial intracellular strategies for acquiring lipids, sheltering and/or dampening the immune response and favouring bacterial survival, likely representing a fundamental aspect of M. leprae pathogenesis. The multifaceted functions attributed to the LD in leprosy may contribute to the development of new strategies for adjunctive anti-leprosy therapies.


Assuntos
Hanseníase Virchowiana/patologia , Mycobacterium leprae/imunologia , Células de Schwann/microbiologia , Humanos , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Hanseníase Virchowiana/imunologia , Lipídeos/imunologia , Organelas/imunologia , Células de Schwann/imunologia
3.
Vaccine ; 25(14): 2716-22, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16814903

RESUMO

We previously showed the opposing effect of systemic and mucosal vaccination with whole Leishmania amazonensis antigen (LaAg). Here, the role played by lipophosphoglycan (LPG) as the key disease-promoting component of intramuscular (i.m.) LaAg and its usefulness as a defined intranasal vaccine was investigated in murine cutaneous leishmaniasis. BALB/c mice were twice vaccinated by the i.m. route with 25mug of intact LaAg or with LaAg that was pretreated with anti-LPG 3A1-La monoclonal antibody, prior to infection with L. amazonensis. LPG neutralization rendered the otherwise disease-promoting LaAg antigen protective, as observed by the smaller lesion sizes and reduced parasite burden. The increased resistance was accompanied by a markedly lower antigen-driven TGF-beta and IL-10 responses in the lesion-draining lymph nodes, concomitant with significantly higher IFN-gamma production. To test for intranasal efficacy, 10 microg of affinity-purified LPG and its parental LaAg were twice instilled in the nostrils prior to L. amazonensis infection. In both cases, similarly slower lesion growth and lower parasite burden were found that was associated with increased IFN-gamma and IL-10 responses in the lesion-draining lymph nodes. These results support a role for LPG in the dual route-related effect of LaAg and shows its strong potential as a defined needle-free and adjuvant-free vaccine for cutaneous leishmaniasis.


Assuntos
Antígenos de Protozoários/imunologia , Glicoesfingolipídeos/imunologia , Leishmania mexicana/imunologia , Leishmaniose Cutânea/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Administração Intranasal , Animais , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA