Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Histol Histopathol ; 31(8): 933-42, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26853489

RESUMO

Endometriosis is a benign gynecological disease affecting approximately 10-15% of women of reproductive age and 25-50% of all infertile women. It is characterized by the presence of glands and/or endometrial stroma outside the uterine cavity. Angiogenesis is a crucial process for the development and maintenance of endometriotic lesions. The Wnt/ß-catenin pathway is a major promoter of angiogenesis in both physiological and pathological conditions. In the present study, we evaluated the expression of molecules related to the Wnt/ß-catenin pathway in a rat model of peritoneal endometriosis. mRNA analyses showed significantly increased expression of Wnt4 and Wnt7b and decreased expression of Gsk3beta and E-cadherin in endometriotic lesions. However, there were no differences in ß-catenin and Fzd2 mRNA expression. In addition, we observed a significant increase of nuclear ß-catenin in endometriotic lesions, a hallmark of Wnt/ ß-catenin pathway activation. Stromal ß-catenin staining was found in 45.4% of endometrial tissues and 77.8% of endometriotic lesions. ß-catenin nuclear localization was found in 18.2% of the endometrial tissues and 33.3% of endometriotic lesions. Finally, the expression of galectin-3, a regulator of this pathway, was increased in endometriosis. In summary, this pattern of Wnt/ß-catenin components expression suggests an increased activity of this pathway in endometriosis.


Assuntos
Endometriose/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Western Blotting , Modelos Animais de Doenças , Endometriose/fisiopatologia , Feminino , Imunofluorescência , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , beta Catenina/metabolismo
3.
J Pharm Pharmacol ; 67(12): 1744-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407531

RESUMO

OBJECTIVES: The hormonal treatment for endometriosis frequently fails to completely eradicate endometriotic implants. A new therapeutic treatment is needed. This study investigates the in-vitro effect of Copaifera langsdorffii oil-resin on human eutopic and ectopic endometrium stromal cell cultures (EuESCs and EctESCs). METHODS: A nanocomposite system containing the copaiba oil-resin (NanoCOR) was developed and acute toxicity test was performed. Endometrial stromal cells (ESCs) from non-endometriotics controls (CESCs), EuESCs and EctESCs were isolated and treated with different concentrations of NanoCOR, at different time intervals to evaluate its effect on cell morphology, proliferation, viability, necrosis and apoptosis induction. KEY FINDINGS: When treated with 50 µg/ml of NanoCOR, the morphology of EctESCs changed, as the actin microfilaments were disorganized, disassembled or disrupted. Moreover, at 24 h of treatment with NanoCOR, the EctESCs viability was inhibited, and a significant number of these cells underwent apoptosis. In EuESCs, these effects were observed only at 48 h. Finally, the treatment of EctESCs with NanoCOR increased the lactate dehydrogenase release into the extracellular medium more than in EuESCs. CONCLUSIONS: Our data indicate that NanoCOR has a greater impact on the behaviour of human endometriotic stromal cells than on the eutopic endometrium stromal cells, supporting the idea that NanoCOR should be further investigated as a novel and valuable alternative to treat endometriosis.


Assuntos
Forma Celular/efeitos dos fármacos , Endometriose/tratamento farmacológico , Endométrio/efeitos dos fármacos , Fabaceae/química , Óleos de Plantas/farmacologia , Resinas Vegetais/farmacologia , Células Estromais/efeitos dos fármacos , Árvores , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/patologia , Animais , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Masculino , Camundongos , Nanopartículas , Necrose , Fitoterapia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/toxicidade , Plantas Medicinais , Floresta Úmida , Resinas Vegetais/isolamento & purificação , Resinas Vegetais/toxicidade , Células Estromais/patologia , Fatores de Tempo , Clima Tropical
4.
Clin Exp Metastasis ; 31(4): 461-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24488147

RESUMO

Tumor establishment, growth, and survival are supported by interactions with microenvironment components. Here, we investigated whether the interactions between prostate cancer cells and cortical astrocytes are associated to a potential role for astrocytes in tumor establishment. We demonstrate that astrocytes interact in vitro with prostatic cancers cells derived from different metastatic sites. Astrocytes and their secreted extracellular matrix, stimulate DU145 cell (a brain-derived prostate tumor cell line) proliferation while inhibiting cell death and modulating the expression of several genes related to prostate cancer progression, suggesting the activation of EMT process in these cells. In contrast, DU145 cells and their conditioned medium inhibited cell proliferation and induced cell death of astrocytes. On the other hand, the astrocytes were unable to significantly induce an increment of LNCaP cell (a lymph node-derived prostate tumor cell line) proliferative activity. In addition, LNCaP cells were also unable to induce cell death of astrocytes. Thus, we believe that DU145 cells, but not LNCaP cells, present an even more aggressive behavior when interacting with astrocytes. These results provide an important contribution to the elucidation of the cellular mechanisms involved in the brain microenvironment colonization.


Assuntos
Astrócitos/patologia , Neoplasias Encefálicas/secundário , Comunicação Celular , Movimento Celular , Neoplasias da Próstata/patologia , Apoptose , Astrócitos/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Microambiente Tumoral
5.
PLoS One ; 8(5): e62773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667519

RESUMO

Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1) in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27(kip1) in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1); and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.


Assuntos
Adenoma/patologia , Hormônio Adrenocorticotrópico/metabolismo , Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Neoplasias Hipofisárias/patologia , beta Caroteno/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Conexina 43/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Licopeno , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...