Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800369

RESUMO

Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle age and thereafter onset of diabetes. At six-weeks age, male C57BL/6 mice were separated into groups fed a chow and High-Fat Diet for 0.5, 3, and 6 months. Treatment groups included long term, obesity stressed mice with induction of diabetes by streptozotocin at 5 months, and further physiologic evaluation at 8 months old. We show that this model results in a severe metabolic phenotype with insulin resistance and glucose intolerance associated with obesity and, more importantly, skin changes. The phenotype of this older age mouse model included a transcriptional signature of gene expression in skin that overlapped that observed with elderly patients who develop diabetic foot ulcers. We believe this unique old age phenotype contrasts with current mice models with induced diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Idoso , Pessoa de Meia-Idade , Humanos , Masculino , Camundongos , Animais , Pré-Escolar , Lactente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Modelos Animais de Doenças , Cicatrização , Obesidade/complicações , Pé Diabético/complicações
2.
PLoS One ; 16(10): e0259134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699564

RESUMO

Epidermal growth factor (EGF) promotes cell growth, proliferation, and survival in numerous tissues. Piperonylic acid, a metabolite present in peppers (Piper nigrum L. and Piper longum L.), can bind to the epidermal growth factor receptor (EGFR) and induce an intracellular signaling cascade leading to the transcription of genes responsible for these actions, especially in keratinocytes. These cells are fundamental in maintaining cutaneous homeostasis and are the first to be damaged in the case of a wound. Thus, we hypothesized that piperonylic acid improves wound healing. C57BL6/J male mice were submitted to dorsal skin wounds caused by a 6 mm punch and treated topically with piperonylic acid or vehicle. The wounds were evaluated macro- and microscopically, and tissue samples were collected for immunofluorescence and real-time PCR analyses on days 6, 9 and 19 post-injury. Topical piperonylic acid improved wound healing from day 6 post-injury until closure. This phenomenon apparently occurred through EGFR activation. In addition, piperonylic acid modulated the gene expression of interleukin (Il)-6, il-1ß, tumor necrosis factor (Tnf)-α, il-10, monocyte chemoattractant protein (Mcp)-1 and insulin-like growth factor (Igf)-1, which are important for the healing process. By day 19 post-injury, the new tissue showed greater deposition of type I collagen and a morphology closer to intact skin, with more dermal papillae and hair follicles. We conclude that piperonylic acid may be a viable option for the treatment of skin wounds.


Assuntos
Benzoatos/administração & dosagem , Colágeno/metabolismo , Inflamação/metabolismo , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Citocinas/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo
3.
Sci Rep ; 11(1): 15453, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326383

RESUMO

Glutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.


Assuntos
Ácido Glutâmico/farmacologia , Folículo Piloso/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Fenômenos Fisiológicos da Pele , Pele/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Simulação por Computador , Desenvolvimento de Medicamentos , Fibroblastos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Queratinócitos/citologia , Masculino , Camundongos , Mapeamento de Interação de Proteínas , Regeneração , Transdução de Sinais , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...