Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 22739, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123658

RESUMO

Experiments were conducted to evaluate the stability and degradation of NBPT under storage conditions and to quantify urease activity, ammonia losses by volatilization, and agronomic efficiency of urea treated with different urease inhibitors, measured in the field. Experiments included urea treated with 530 mg NBPT kg-1 (UNBPT) in contact with six P-sources (monoammonium phosphate-MAP; single superphosphate; triple superphosphate; P-Agrocote; P-Phusion; P-Policote), with two P-concentrations (30; 70%); the monitoring four N-technologies (SoILC; Limus; Nitrain; Anvol); and the application of conventional urea (UGRAN) or urea treated with urease inhibitors as topdressing in three maize fields, at three N rates. It is concluded that: the mixture of UNBPT and P-fertilizers is incompatible. When MAP granules were coated to control P-release (P-Agrocote), the degradation of NBPT was moderate (approximately 400 mg kg-1 at the end of the storage test). SoILC and Limus solvent technologies extended the NBPT half-life by up to 3.7 and 4.7 months, respectively. Under field, each inhibition technology reduced urease activity, and lowered the intensity of ammonia emission compared to UGRAN by 50-62%. Our results show that the concentration of NBPT is reduced by up to 53.7% for mixing with phosphates. In addition, even with coatings, the storage of mixtures of urea with NBPT and phosphates should be for a time that does not reduce the efficiency of the inhibitor after application, and this time under laboratory conditions was 168 h. The reduction of NBPT concentration in urea is reduced even in isolated storage, our results showed that the half-life time is variable according to the formulation used, being 4.7, 3.7, 2.8 and 2.7 days for Limus, SoILC, Nitrain and Anvol, respectively. The results of these NBPT formulations in the field showed that the average losses by volatilization in the three areas were: 15%, 16%, 17%, 19% and 39% of the N applied, for SoILC, Anvol, Nitrain, Limus and urea, respectively. The rate of nitrogen application affected all agronomic variables, with varied effects in Ingaí. Even without N, yields were higher than 9200 kg ha-1 of grains. The increase in nitrogen rates resulted in linear increases in production and N removal in Luminárias and Ingaí, but in Lavras, production decreased above 95.6 kg ha-1 of N. The highest production in Lavras (13,772 kg ha-1 of grains) occurred with 100 kg ha-1 of N. The application of Anvol reduced the removal of N in Ingaí.


Assuntos
Amônia , Solo , Amônia/metabolismo , Fertilizantes , Urease/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Agricultura/métodos , Difosfatos , Tecnologia , Nitrogênio/metabolismo
3.
Plants (Basel) ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840232

RESUMO

The present study had the objective to evaluate the effect of blends of KCl and K2SO4 fertilizers and their influence on the yield and the nutritional state of coffee plants, as well as on the chemical composition and quality of the coffee beverage. The experimental design was in randomized blocks with four repetitions and six treatments (T1: 100% KCl; T2: 75% KCl + 25% K2SO4; T3: 50% KCl + 50% K2SO4; T4: 25% KCl + 75% K2SO4; T5: 100% K2SO4; and a control, without application of K). The following analyses were performed: K and Cl content in the leaves and the soil, stocks of Cl in soil, yield, removal of K and Cl with the beans, cup quality of the beverage, polyphenol oxidase activity (PPO), electric conductivity (EC), potassium leaching (KL), the content of phenolic compounds, the content of total sugars (TS), and total titratable acidity (TTA). The stocks of Cl in the soil decreased as the proportion of KCl in the fertilizer was reduced. The fertilization with KCl reduces the cup quality and the activity of the polyphenol oxidase, probably due to the ion Cl. The increase in the application of Cl directly relates to the increase in potassium leaching, electric conductivity, and titratable acidity. Indirectly, these variables indicate damages to the cells by the use of Cl in the fertilizer. The activity of the polyphenol oxidase enzyme and the cup quality indicate that the ion Cl- reduces the quality of the coffee beverage. K content in the leaves was not influenced by the application of blends of K fertilizer while Cl content increased linearly with KCl applied. The application of KCl and K2SO4 blends influenced coffee yield and the optimum proportion was 25% of KCl and 75% of K2SO4. The highest score in the cup quality test was observed with 100% K2SO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...