Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 582, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755427

RESUMO

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Retroelementos , Animais , Retroelementos/genética , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Ilhas de CpG , Masculino
2.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216617

RESUMO

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Assuntos
Feiticeiras (Peixe) , Animais , Filogenia , Feiticeiras (Peixe)/genética , Duplicação Gênica , Vertebrados/genética , Genoma , Lampreias/genética
3.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
4.
Science ; 381(6658): 602-603, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561871

RESUMO

A study of 348 species offers clues into the diversity of mammalian life spans.


Assuntos
Metilação de DNA , Longevidade , Mamíferos , Animais , Mamíferos/genética , Longevidade/genética
5.
J Biol Chem ; 298(10): 102462, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067881

RESUMO

Specific DNA methylation at CpG and non-CpG sites is essential for chromatin regulation. The DNA methyltransferase DNMT3A interacts with target sites surrounded by variable DNA sequences with its TRD and RD loops, but the functional necessity of these interactions is unclear. We investigated CpG and non-CpG methylation in a randomized sequence context using WT DNMT3A and several DNMT3A variants containing mutations at DNA-interacting residues. Our data revealed that the flanking sequence of target sites between the -2 and up to the +8 position modulates methylation rates >100-fold. Non-CpG methylation flanking preferences were even stronger and favor C(+1). R836 and N838 in concert mediate recognition of the CpG guanine. R836 changes its conformation in a flanking sequence-dependent manner and either contacts the CpG guanine or the +1/+2 flank, thereby coupling the interaction with both sequence elements. R836 suppresses activity at CNT sites but supports methylation of CAC substrates, the preferred target for non-CpG methylation of DNMT3A in cells. N838 helps to balance this effect and prevent the preference for C(+1) from becoming too strong. Surprisingly, we found L883 reduces DNMT3A activity despite being highly conserved in evolution. However, mutations at L883 disrupt the DNMT3A-specific DNA interactions of the RD loop, leading to altered flanking sequence preferences. Similar effects occur after the R882H mutation in cancer cells. Our data reveal that DNMT3A forms flexible and interdependent interaction networks with the CpG guanine and flanking residues that ensure recognition of the CpG and efficient methylation of the cytosine in contexts of variable flanking sequences.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Ilhas de CpG , DNA/química , DNA/metabolismo , Metilases de Modificação do DNA/genética , Guanina , Mutação
6.
Genome Biol ; 23(1): 163, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883107

RESUMO

BACKGROUND: Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed. RESULTS: Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. CONCLUSIONS: These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Cromatina , Ilhas de CpG , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
7.
Nat Ecol Evol ; 5(3): 369-378, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462491

RESUMO

Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.


Assuntos
Metilação de DNA , Proteína 2 de Ligação a Metil-CpG , Animais , Encéfalo/metabolismo , Genoma , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Vertebrados/genética
9.
Nucleic Acids Res ; 48(22): 12675-12688, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33271598

RESUMO

In vertebrates, DNA methylation predominantly occurs at CG dinucleotides however, widespread non-CG methylation (mCH) has been reported in mammalian embryonic stem cells and in the brain. In mammals, mCH is found at CAC trinucleotides in the nervous system, where it is associated with transcriptional repression, and at CAG trinucleotides in embryonic stem cells, where it positively correlates with transcription. Moreover, CAC methylation appears to be a conserved feature of adult vertebrate brains. Unlike any of those methylation signatures, here we describe a novel form of mCH that occurs in the TGCT context within zebrafish mosaic satellite repeats. TGCT methylation is inherited from both male and female gametes, remodelled during mid-blastula transition, and re-established during gastrulation in all embryonic layers. Moreover, we identify DNA methyltransferase 3ba (Dnmt3ba) as the primary enzyme responsible for the deposition of this mCH mark. Finally, we observe that TGCT-methylated repeats are specifically associated with H3K9me3-marked heterochromatin suggestive of a functional interplay between these two gene-regulatory marks. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Satélite/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas de Peixe-Zebra/genética , Animais , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Heterocromatina , Histonas/genética , Mosaicismo , Sequências Repetitivas de Ácido Nucleico/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
10.
Development ; 147(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272929

RESUMO

Almost all animals undergo embryonic development, going from a single-celled zygote to a complex multicellular adult. We know that the patterning and morphogenetic processes involved in development are deeply conserved within the animal kingdom. However, the origins of these developmental processes are just beginning to be unveiled. Here, we focus on how the protist lineages sister to animals are reshaping our view of animal development. Most intriguingly, many of these protistan lineages display transient multicellular structures, which are governed by similar morphogenetic and gene regulatory processes as animal development. We discuss here two potential alternative scenarios to explain the origin of animal embryonic development: either it originated concomitantly at the onset of animals or it evolved from morphogenetic processes already present in their unicellular ancestors. We propose that an integrative study of several unicellular taxa closely related to animals will allow a more refined picture of how the last common ancestor of animals underwent embryonic development.


Assuntos
Evolução Biológica , Coanoflagelados/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Morfogênese/genética , Animais , Coanoflagelados/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/genética , Filogenia , Zigoto/crescimento & desenvolvimento
11.
Nature ; 587(7834): 455-459, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116314

RESUMO

Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Mães , Neurônios/metabolismo , Reprodução/fisiologia , Estruturas Animais/citologia , Estruturas Animais/inervação , Estruturas Animais/metabolismo , Animais , Regulação do Apetite/fisiologia , Feminino , Hiperfagia/metabolismo , Masculino , Neuropeptídeos/metabolismo
12.
Nat Commun ; 11(1): 3676, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719321

RESUMO

The genomes of non-bilaterian metazoans are key to understanding the molecular basis of early animal evolution. However, a full comprehension of how animal-specific traits, such as nervous systems, arose is hindered by the scarcity and fragmented nature of genomes from key taxa, such as Porifera. Ephydatia muelleri is a freshwater sponge found across the northern hemisphere. Here, we present its 326 Mb genome, assembled to high contiguity (N50: 9.88 Mb) with 23 chromosomes on 24 scaffolds. Our analyses reveal a metazoan-typical genome architecture, with highly shared synteny across Metazoa, and suggest that adaptation to the extreme temperatures and conditions found in freshwater often involves gene duplication. The pancontinental distribution and ready laboratory culture of E. muelleri make this a highly practical model system which, with RNAseq, DNA methylation and bacterial amplicon data spanning its development and range, allows exploration of genomic changes both within sponges and in early animal evolution.


Assuntos
Mapeamento Cromossômico , Cromossomos/genética , Evolução Molecular , Poríferos/genética , Adaptação Fisiológica/genética , Animais , Epigênese Genética , Água Doce , Regulação da Expressão Gênica no Desenvolvimento , Anotação de Sequência Molecular , Filogenia , Poríferos/crescimento & desenvolvimento , RNA-Seq , Análise de Sequência de DNA , Sintenia
13.
Nat Commun ; 11(1): 2631, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457347

RESUMO

The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.


Assuntos
Adaptação Fisiológica/genética , Ephemeroptera/genética , Evolução Molecular , Asas de Animais , Animais , Ephemeroptera/classificação , Ephemeroptera/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Genoma de Inseto/genética , Brânquias , Insetos/classificação , Insetos/genética , Estágios do Ciclo de Vida/genética , Masculino , Filogenia
14.
J Mol Biol ; 432(6): 1687-1705, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31726061

RESUMO

Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.

15.
Nat Ecol Evol ; 3(10): 1464-1473, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31558833

RESUMO

Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.


Assuntos
Epigenoma , Poríferos , Animais , Metilação de DNA , Invertebrados , Vertebrados
16.
Curr Opin Genet Dev ; 58-59: 25-32, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31466037

RESUMO

Transcription factors (TFs) have a central role in genome regulation directing gene transcription through binding specific DNA sequences. Eukaryotic genomes encode a large diversity of TF classes, each defined by unique DNA-interaction domains. Recent advances in genome sequencing and phylogenetic placement of diverse eukaryotic and archaeal species are re-defining the evolutionary history of eukaryotic TFs. The emerging view from a comparative genomics perspective is that the Last Eukaryotic Common Ancestor (LECA) had an extensive repertoire of TFs, most of which represent eukaryotic evolutionary novelties. This burst of TF innovation coincides with the emergence of genomic nuclear segregation and complex chromatin organization.


Assuntos
Proteínas de Ligação a DNA/genética , Eucariotos/genética , Evolução Molecular , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Eucariotos/metabolismo , Genômica , Modelos Genéticos , Filogenia , Domínios Proteicos/genética , Fatores de Transcrição/metabolismo
17.
Genome Res ; 29(8): 1277-1286, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239280

RESUMO

The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon-encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding potentially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome disproportionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epigenome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.


Assuntos
Artrópodes/genética , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Genoma , Retroelementos , Sequência de Aminoácidos , Animais , Artrópodes/classificação , Artrópodes/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Filogenia , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
18.
Nat Commun ; 9(1): 1811, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717194

RESUMO

The original version of this Article contained an error in the spelling of the author Hongfei Li, which was incorrectly given as Fei Hong. This has now been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 1341, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632298

RESUMO

Transposable elements are in a constant arms race with the silencing mechanisms of their host genomes. One silencing mechanism commonly used by many eukaryotes is dependent on cytosine methylation, a covalent modification of DNA deposited by C5 cytosine methyltransferases (DNMTs). Here, we report how two distantly related eukaryotic lineages, dinoflagellates and charophytes, have independently incorporated DNMTs into the coding regions of distinct retrotransposon classes. Concomitantly, we show that dinoflagellates of the genus Symbiodinium have evolved cytosine methylation patterns unlike any other eukaryote, with most of the genome methylated at CG dinucleotides. Finally, we demonstrate the ability of retrotransposon DNMTs to methylate CGs de novo, suggesting that retrotransposons could self-methylate retrotranscribed DNA. Together, this is an example of how retrotransposons incorporate host-derived genes involved in DNA methylation. In some cases, this event could have implications for the composition and regulation of the host epigenomic environment.


Assuntos
Carofíceas/enzimologia , Carofíceas/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dinoflagellida/enzimologia , Dinoflagellida/genética , Retroelementos , Metilação de DNA/genética , Epigênese Genética , Evolução Molecular , Inativação Gênica , Filogenia
20.
Cell Stem Cell ; 21(6): 834-845.e6, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220667

RESUMO

Somatic cell reprogramming into induced pluripotent stem cells (iPSCs) induces changes in genome architecture reflective of the embryonic stem cell (ESC) state. However, only a small minority of cells typically transition to pluripotency, which has limited our understanding of the process. Here, we characterize the DNA regulatory landscape during reprogramming by time-course profiling of isolated sub-populations of intermediates poised to become iPSCs. Widespread reconfiguration of chromatin states and transcription factor (TF) occupancy occurs early during reprogramming, and cells that fail to reprogram partially retain their original chromatin states. A second wave of reconfiguration occurs just prior to pluripotency acquisition, where a majority of early changes revert to the somatic cell state and many of the changes that define the pluripotent state become established. Our comprehensive characterization of reprogramming-associated molecular changes broadens our understanding of this process and sheds light on how TFs access and change the chromatin during cell-fate transitions.


Assuntos
Reprogramação Celular , Cromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Reprogramação Celular/genética , Cromatina/genética , Feminino , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...