Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1208561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744246

RESUMO

Introduction: Tuning the control parameters is one of the main challenges in robotic gait therapy. Control strategies that vary the control parameters based on the user's performance are still scarce and do not exploit the potential of using spatiotemporal metrics. The goal of this study was to validate the feasibility of using shank-worn Inertial Measurement Units (IMUs) for clinical gait analysis after stroke and evaluate their preliminary applicability in designing an automatic and adaptive controller for a knee exoskeleton (ABLE-KS). Methods: First, we estimated the temporal (i.e., stride time, stance, and swing duration) and spatial (i.e., stride length, maximum vertical displacement, foot clearance, and circumduction) metrics in six post-stroke participants while walking on a treadmill and overground and compared these estimates with data from an optical motion tracking system. Next, we analyzed the relationships between the IMU-estimated metrics and an exoskeleton control parameter related to the peak knee flexion torque. Finally, we trained two machine learning algorithms, i.e., linear regression and neural network, to model the relationship between the exoskeleton torque and maximum vertical displacement, which was the metric that showed the strongest correlations with the data from the optical system [r = 0.84; ICC(A,1) = 0.73; ICC(C,1) = 0.81] and peak knee flexion torque (r = 0.957). Results: Offline validation of both neural network and linear regression models showed good predictions (R2 = 0.70-0.80; MAE = 0.48-0.58 Nm) of the peak torque based on the maximum vertical displacement metric for the participants with better gait function, i.e., gait speed > 0.7 m/s. For the participants with worse gait function, both models failed to provide good predictions (R2 = 0.00-0.19; MAE = 1.15-1.29 Nm) of the peak torque despite having a moderate-to-strong correlation between the spatiotemporal metric and control parameter. Discussion: Our preliminary results indicate that the stride-by-stride estimations of shank-worn IMUs show potential to design automatic and adaptive exoskeleton control strategies for people with moderate impairments in gait function due to stroke.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37556332

RESUMO

Studies on robotic interventions for gait rehabilitation after stroke require: (i) rigorous performance evidence; (ii) systematic procedures to tune the control parameters; and (iii) combination of control modes. In this study, we investigated how stroke individuals responded to training for two weeks with a knee exoskeleton (ABLE-KS) using both Assistance and Resistance training modes together with auditory feedback to train peak knee flexion angle. During the training, the torque provided by the ABLE-KS and the biofeedback were systematically adapted based on the subject's performance and perceived exertion level. We carried out a comprehensive experimental analysis that evaluated a wide range of biomechanical metrics, together with usability and users' perception metrics. We found significant improvements in peak knee flexion ( p = 0.0016 ), minimum knee angle during stance ( p = 0.0053 ), paretic single support time ( p = 0.0087 ) and gait endurance ( p = 0.022 ) when walking without the exoskeleton after the two weeks of training. Participants significantly ( ) improved the knee angle during the stance and swing phases when walking with the exoskeleton powered in the high Assistance mode in comparison to the No Exo and the Unpowered conditions. No clinically relevant differences were found between Assistance and Resistance training sessions. Participants improved their performance with the exoskeleton (24-55 %) for the peak knee flexion angle throughout the training sessions. Moreover, participants showed a high level of acceptability of the ABLE-KS (QUEST 2.0 score: 4.5 ± 0.3 out of 5). Our preliminary findings suggest that the proposed training approach can produce similar or larger improvements in post-stroke individuals than other studies with knee exoskeletons that used higher training intensities.


Assuntos
Exoesqueleto Energizado , Treinamento Resistido , Reabilitação do Acidente Vascular Cerebral , Humanos , Fenômenos Biomecânicos , Articulação do Joelho , Joelho , Caminhada , Marcha
3.
J Neuroeng Rehabil ; 20(1): 23, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36805777

RESUMO

BACKGROUND: In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. METHODS: Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. RESULTS: (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. CONCLUSIONS: Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.


Assuntos
Lesões Encefálicas , Exoesqueleto Energizado , Reabilitação Neurológica , Robótica , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...