Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 093801, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489636

RESUMO

We report the first experimental demonstration of the replica symmetry breaking (RSB) phenomenon in a fiber laser system supporting standard mode-locking (SML) regime. Though theoretically predicted, this photonic glassy phase remained experimentally undisclosed so far. We employ an ytterbium-based mode-locked fiber laser with a very rich phase diagram. Two phase transitions are observed separating three different regimes: cw, quasi-mode-locking (QML), and SML. The regimes are intrinsically related to the distinct dynamics of intensity fluctuations in the laser spectra. We set the connection between the RSB glassy phase with frustrated modes and onset of L-shaped intensity distributions in the QML regime, which impact directly the replica overlap measure.

2.
Opt Express ; 26(10): 13686-13692, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801391

RESUMO

We experimentally study the nonlinear dynamics of a femtosecond ytterbium doped mode-locked fiber laser. With the laser operating in the pulsed regime a route to chaos is presented, starting from stable mode-locking, period two, period four, chaos and period three regimes. Return maps and bifurcation diagrams were extracted from time series for each regime. The analysis of the time series with the laser operating in the quasi mode-locked regime presents deterministic chaos described by an unidimensional Rössler map. A positive Lyapunov exponent λ = 0.14 confirms the deterministic chaos of the system. We suggest an explanation about the observed map by relating gain saturation and intra-cavity loss.

3.
Phys Rev Lett ; 99(15): 153601, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17995163

RESUMO

The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6 x 10{-18} at 1 s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar performance. Using frequency combs at each end of the coherent-transfer fiber link, a heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...