Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(10): 17371-17382, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221562

RESUMO

Flat optics nanogratings supported on thin free-standing membranes offer the opportunity to combine narrowband waveguided modes and Rayleigh anomalies for sensitive and tunable biosensing. At the surface of high-refractive index Si3N4 membranes we engineered lithographic nanogratings based on plasmonic nanostripes, demonstrating the excitation of sharp waveguided modes and lattice resonances. We achieved fine tuning of these optical modes over a broadband Visible and Near-Infrared spectrum, in full agreement with numerical calculations. This possibility allowed us to select sharp waveguided modes supporting strong near-field amplification, extending for hundreds of nanometres out of the grating and enabling versatile biosensing applications. We demonstrate the potential of this flat-optics platform by devising a proof-of-concept nanofluidic refractive index sensor exploiting the long-range waveguided mode operating at the sub-picoliter scale. This free-standing device configuration, that could be further engineered at the nanoscale, highlights the strong potential of flat-optics nanoarrays in optofluidics and nanofluidic biosensing.


Assuntos
Técnicas Biossensoriais , Luz , Óptica e Fotônica , Refratometria
2.
Adv Mater ; 30(30): e1801840, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882306

RESUMO

Pattern formation induced by wrinkling is a very common phenomenon exhibited in soft-matter substrates. In all these systems, wrinkles develop in the presence of compressively stressed thin films lying on compliant substrates. Here, the controlled growth of self-organized nanopatterns exploiting a wrinkling instability on a solid-state substrate is demonstrated. Soda-lime glasses are modified in the surface layers by a defocused ion beam, which triggers the formation of a compressively stressed surface layer deprived of alkali ions. When the substrate is heated up near its glass transition temperature, the wrinkling instability boosts the growth rate of the pattern by about two orders of magnitude. High-aspect-ratio anisotropic ripples bound by faceted ridges are thus formed, which represent an optimal template for guiding the growth of large-area arrays of functional nanostructures. The engineering over large square centimeter areas of quasi-1D arrays of Au nanostripe dimers endowed with tunable plasmonic response, strong optical dichroism, and high electrical conductivity is demonstrated. These peculiar functionalities allow these large-area substrates to be exploited as active metamaterials in nanophotonics, biosensing, and optoelectronics.

3.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29315869

RESUMO

MoS2 and generally speaking, the wide family of transition-metal dichalcogenides represents a solid nanotechnology platform on which to engineer a wealth of new and outperforming applications involving 2D materials. An even richer flexibility can be gained by extrinsically inducing an in-plane shape anisotropy of the nanosheets. Here, the synthesis of anisotropic MoS2 nanosheets is proposed as a prototypical example in this respect starting from a highly conformal chemical vapor deposition on prepatterend substrates and aiming at the more general purpose of tailoring anisotropy of 2D nanosheets by design. This is envisioned to be a suitable configuration for strain engineering as far as strain can be spatially redistributed in morphologically different regions. With a similar approach, both the optical and electronic properties of the 2D transition-metal dichalcogenides can be tailored over macroscopic sample areas in a self-organized fashion, thus paving the way for new applications in the field of optical metasurfaces, light harvesting, and catalysis.

4.
Nanotechnology ; 25(48): 485302, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25396680

RESUMO

Gold nanospheres have been manipulated by atomic force microscopy on a rippled glass surface produced by ion beam sputtering and coated with an ultrathin (10 nm thick) graphitic layer. This substrate is characterized by irregular wavy grooves running parallel to a preferential direction. Measurements in ambient conditions show that the motion of the nanoparticles is confined to single grooves ('channels'), along which the particles move till they are trapped by local bottlenecks. At this point, the particles cross the ripple pattern in a series of consecutive jumps and continue their longitudinal motion along a different channel. Moreover, due to the asymmetric shape of the ripple profiles, the jumps occur in the direction of minimum slope, resembling a ratchet mechanism. Our results are discussed, extending a collisional model, which was recently developed for the manipulation of nanospheres on flat surfaces, to the specific geometry of this problem.

5.
Small ; 9(6): 913-9, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23208894

RESUMO

A self-organised approach for the synthesis of transparent metal nanowire arrays is based on defocused ion beam sputtering. The nanowire arrays, supported on low-cost dielectric substrates (glass slides), feature a dual functionality: they exhibit anisotropic conductivity, with sheet resistances which are reduced in comparison to those of transparent conductive oxides, and additionally they support localised plasmon resonances. The latter represents an attractive feature in view of plasmon enhanced photon harvesting applications, in which the nanostructured metal electrodes are employed as an alternative to conventional transparent conductive oxides.

7.
Small ; 5(12): 1460-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19283797

RESUMO

A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.


Assuntos
Ferro/química , Magnetismo , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica , Espectrometria de Massa de Íon Secundário , Fatores de Tempo , Vácuo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...