Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2311, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484154

RESUMO

Non-volcanic tremor is a particularly enigmatic form of seismic activity. In its most studied subduction zone setting, tremor typically occurs within the plate interface at or near the shallow and deep edges of the interseismically locked zone. Detailed seismic observations have shown that tremor is composed of repeating small low-frequency earthquakes, often accompanied by very-low-frequency earthquakes, all involving shear failure and slip. However, low-frequency earthquakes and very-low-frequency earthquakes within each cluster show nearly constant source durations for all observed magnitudes, which implies characteristic tremor sub-event sources of near-constant size. Here we integrate geological observations and geomechanical lab measurements on heterogeneous rock assemblages representative of the shallow tremor region offshore the Middle America Trench with numerical simulations to demonstrate that these tremor events are consistent with the seismic failure of relatively weaker blocks within a stronger matrix. In these subducting rocks, hydrothermalism has led to a strength-inversion from a weak matrix with relatively stronger blocks to a stronger matrix with embedded relatively weaker blocks. Tremor naturally occurs as the now-weaker blocks fail seismically while their surrounding matrix has not yet reached a state of general seismic failure.

2.
J Geophys Res Solid Earth ; 126(11): e2021JB022232, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35859888

RESUMO

Rocks of the Earth's crust and mantle commonly consist of different minerals with contrasting mechanical properties. During progressive, high-temperature (ductile) deformation, these rocks develop extrinsic mechanical anisotropy linked to strain partitioning between different minerals, amount of accumulated strain, and bulk strain geometry. Extrinsic anisotropy plays an important role in a wide range of geodynamic processes up to the scale of mantle convection. However, the evolution of grain- and rock-scale fabrics causing this anisotropy cannot be directly simulated in large-scale numerical simulations. For two-phase aggregates-a good rheological approximation of most Earth's rocks-we propose a method to indirectly approximate the extrinsic viscous anisotropy by combining (a) 3D mechanical models of rock fabrics, and (b) analytical effective medium theories. Our results confirm that weak inclusions induce substantial weakening by forming a network of weak thin layers with limited lateral connectivity. Consequently, even when the inclusion phase is extremely weak, structural weakening is not larger than 30-60%, less than in previous estimates. On the other hand, the presence of strong inclusions does not have a profound impact on the effective strength of the aggregate, and lineated fabrics only develop at relatively low viscosity contrasts. When rigid inclusions become clogged, however, the aggregate viscosity can increase over the theoretical upper bound. We show that the modeled grain-scale fabrics can be parameterized as a function of the bulk deformation and material phase properties and combined with analytical solutions to approximate the anisotropic viscous tensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...