Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(12): 461, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926729

RESUMO

Microfluidic cotton thread-based electroanalytical devices (µTEDs) are analytical systems with attractive features such as spontaneous passive flow, low cost, minimal waste production, and good sensitivity. Currently, sample injection in µTEDs is performed by hand using manual micropipettes, which have drawbacks such as inconstant speed and position, dependence of skilled analysts, and need of physical effort of operator during prolonged times, leading to poor reproducibility and risk of strain injury. As an alternative to these inconveniences, we propose, for the first time, the use of electronic micropipettes to carry out automated injections in µTEDs. This new approach avoids all disadvantages of manual injections, while also improving the performance, experience, and versatility of µTEDs. The platform developed here is composed by three 3D-printed electrodes (detector) attached to a 3D-printed platform containing an adjustable holder that keeps the electronic pipette in the same x/y/z position. As a proof-of-concept, both injection modes (manual and electronic) were compared using three model analytes (nitrite, paracetamol, and 5-hydroxytryptophan) on µTED with amperometric detection. As result, improved analytical performance (limits of detection between 2.5- and 5-fold lower) was obtained when using electronic injections, as well as better repeatability/reproducibility and higher analytical frequencies. In addition, the determination of paracetamol in urine samples suggested better precision and accuracy for automated injection. Thus, electronic injection is a great advance and changes the state-of-art of µTEDs, mainly considering the use of more modern and versatile electronic pipettes (wider range of pre-programmed modes), which can lead to the development of even more automated systems.

2.
Mikrochim Acta ; 190(8): 312, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470849

RESUMO

The development of miniaturized, sustainable and eco-friendly analytical sensors with low production cost is a current trend worldwide. Within this idea, this work presents  the innovative use of masked stereolithography (MSLA) 3D-printed substrates for the easy fabrication of pencil-drawn electrochemical sensors (MSLA-3D-PDE). The use of a non-toxic material such as pencil (electrodes) together with a biodegradable 3D printing resin (substrate) allowed the production of devices that are quite cheap (ca. US$ 0.11 per sensor) and with low environmental impact. Compared to paper, which is the most used substrate for manufacturing pencil-drawn electrodes, the MSLA-3D-printed substrate has the advantages of not absorbing water (hydrophobicity) or becoming crinkled and weakened when in contact with solutions. These features provide more reproducible, reliable, stable, and long-lasting sensors. The MSLA-3D-PDE, in conjunction with the custom cell developed, showed excellent robustness and electrochemical performance similar to that observed of the glassy carbon electrode, without the need of any activation procedure. The analytical applicability of this platform was explored through the quantification of omeprazole in pharmaceuticals. A limit of detection (LOD) of 0.72 µmol L-1 was achieved, with a linear range of 10 to 200 µmol L-1. Analysis of real samples provided results that were highly concordant with those obtained by UV-Vis spectrophotometry (relative error ≤ 1.50%). In addition, the greenness of this approach was evaluated and confirmed by a quantitative methodology (Eco-Scale index). Thus, the MSLA-3D-PDE appears as a new and sustainable tool with great potential of use in analytical electrochemistry.

3.
Anal Methods ; 14(34): 3345-3354, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979860

RESUMO

The development of 3D-printed electrochemical sensors by fused deposition modeling (FDM) has been increasing exponentially in the last five years. In this context, commercial conductive filaments composed of a blend of carbon particles (e.g., graphene or carbon black (CB)) and insulating thermoplastic polymers (e.g., polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS)) have been widely used for electrode fabrication. However, such materials may be expensive and the electrodes when used "as-printed" exhibit poor electrochemical performance as a function of the low content of conductive particles in the composition (∼10 to 20 wt%), which requires one or more post-treatment steps (e.g. polishing, chemical, electrochemical, and photochemical) to reach good electrochemical performance. In this technical note a less used approach to produce "ready-to-use" electrochemical platforms based on 3D printing is explored, which consists of the coating of 3D-printed insulating substrates with homemade conductive composites. To demonstrate the potentiality of this alternative protocol, 3D-printed ABS insulating substrates at two geometries were coated in a highly loaded graphite (55 wt%) homemade composite (G-ABS) and evaluated for the detection of the ferri/ferrocyanide redox probe and model analytes in stationary and hydrodynamic 3D-printed systems (nitrite in micro-flow injection analysis/µFIA and paracetamol in batch injection analysis/BIA, respectively). The analytical parameters acquired with the coated electrodes were comparable to those obtained using conventional electrodes (glassy carbon, boron-doped diamond and carbon screen-printed) and 3D-printed sensors fabricated with commercial filaments. Moreover, the inclusion of carbon black in the fluid conductive composite was demonstrated as a perspective to obtain modified coated 3D-printed surfaces easily for the first time. This alternative "do it yourself" strategy is promising for the large-scale production of very cheap (US$ 0.08) and high-performance electrodes based on FDM 3D printing. Moreover, this approach dispenses the acquisition of commercial conductive filaments and the laborious development of homemade filaments.


Assuntos
Grafite , Fuligem , Condutividade Elétrica , Eletrodos , Impressão Tridimensional , Fuligem/química
4.
Mikrochim Acta ; 188(12): 437, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837526

RESUMO

A new contact stamping method for fabrication of paper-based analytical devices (PADs) is reported. It uses an all-purpose acrylic varnish and 3D-printed stamps to pattern hydrophobic structures on paper substrates. The use of 3D printing allows quickly prototyping the desired stamp shape without resorting to third-party services, which are often expensive and time consuming. To the best of our knowledge, this is the first report regarding the use of this material for creation of hydrophobic barriers in paper substrates, as well as this 3D printing-based stamping method. The acrylic varnish was characterized and the features of the stamping method were studied. The PADs developed here presented better compatibility with organic solvents and surfactants compared with similar protocols. Furthermore, the use of this contact stamping method for fabrication of paper electrochemical devices was also possible, as well as multiplexed microfluidic devices for lateral flow testing. The analytical applicability of the varnish-based PADs was demonstrated through the image-based colorimetric quantification of iron in pharmaceutical samples. A limit of detection of 0.61 mg L-1 was achieved. The results were compared with spectrophotometry for validation and presented great concordance (relative error was < 5% and recoveries were between 104 and 108%). Thus, taking into account the performance of the devices explored here, we believe this novel contact stamping method is a very interesting alternative for production of PADs, exhibiting great potentiality. In addition, this work brings a new application of 3D printing in analytical sciences.

5.
Anal Chim Acta ; 1167: 338566, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34049626

RESUMO

Here, a novel electrically conductive thermoplastic material composed of graphite/acrylonitrile butadiene styrene (G/ABS) is reported for the first time. This material was explored on the production of 3D printing-based electrochemical sensors with enhanced sensitivity using a novel fabrication approach. The developed G/ABS electrodes showed lower charge transfer resistance (157 vs. 3279 Ω), higher electroactive area (0.61 vs. 0.19 cm2) and peak currents ca. 69% higher when compared with electrodes fabricated using carbon black/polylactic acid (CB/PLA) commercial filament, which has been widely explored in recent literature. Moreover, the G/ABS sensor provided satisfactory repeatability, reproducibility and stability (relative standard deviations (RSDs) were 1.14%, 6.81% and 10.62%, respectively). This improved performance can be attributed to the fabrication protocol developed here, which allows the incorporation of greater amounts of conductive material in the polymeric matrix. The G/ABS electrode also required a simpler and quicker protocol for activation when compared to CB/PLA. As proof of concept, the G/ABS sensor was employed for electroanalytical quantification of paracetamol (PAR) in pharmaceutical products. The linear concentration range was observed from 0.20 to 30 µmol L-1 and the limit of detection achieved was 54 nmol L-1, much lower than several recent studies dealing with the same analyte. The sensitivity of the G/ABS electrode regarding PAR was also far better when compared to CB/PLA sensor (0.50 µA/µmol L-1 vs. 0.12 µA/µmol L-1). Analyses in commercial pill samples showed good accuracy (recoveries ca. 108%) and precision (RSDs < 5%), suggesting great potential for use of this novel conductive thermoplastic in electroanalytical applications based on 3D printing.

6.
Electrophoresis ; 41(5-6): 278-286, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31529502

RESUMO

This paper describes the development of a novel, simple, and inexpensive electrochemical device containing an integrated and disposable three-electrode system for detection. The base of this platform consists on a PDMS structure containing microchannels which were prototyped using 3D-printed molds. Pencil graphite leads were inserted into these microchannels and utilized as working, counter and reference electrodes in a novel design. Morphological analysis and electrochemical experiments with benchmark redox probes were carried out in order to evaluate the performance and characterize the miniaturized device proposed. Even using inexpensive materials and a simple fabrication protocol, the electrochemical platform developed provided good repeatability and reproducibility over a low cost (ca. $2 per device), acceptable lifetime (ca. 250 voltammetric runs) and extremely reduced consumption of samples and reagents (order of µL). As proof of concept, the analytical feasibility of the platform was investigated through the simultaneous determination of dopamine (DOPA) and acetaminophen (AC). The two analytes showed linear dependence on the concentration range from 1 to 15 µM and the LODs achieved were 0.21 µM for DOPA and 0.29 µM for AC. Moreover, the platform was successfully applied on the determination of DOPA and AC in spiked blood serum and urine samples. The results obtained with the device described here were better than some reports in literature that use more costly electrodic materials and complex modification steps for the detection of the same analytes.


Assuntos
Técnicas Eletroquímicas/instrumentação , Impressão Tridimensional , Acetaminofen/sangue , Equipamentos Descartáveis , Dopamina/sangue , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento/métodos , Reutilização de Equipamento , Grafite/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA