Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202301982, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608157

RESUMO

Geopropolis resins are produced by stingless bees (Meliponinae), developed from the collection of resinous materials, waxes and exudates, from the flora of the region where stingless bees are present, in addition to the addition of clay or earth in its composition. Several biological activities are attributed to Ethanol Extracts of Geopropolis (EEGP). The bioactive properties are associated with the complex chemical composition that the samples have. This work aims to evaluate the biological activities of the EEGP, in order to contribute with a natural therapeutic alternative, to face infections, mainly those caused by resistant strains of Staphylococcus aureus. The EEGP MIC tests showed antibacterial activity against two strains of S. aureus, both at concentrations of 550 µg/mL. The MBC performed with the inhibition values showed that the EEGP has bacteriostatic activity in both strains. Biofilm inhibition rates exhibited an average value greater than 65 % at the highest concentration. The EEGP antioxidant potential test showed good antioxidant activity (IC50) of 11.05±1.55 µg/mL. In the cytotoxicity test against HaCat cells, after 24 hours, EEGP induced cell viability at the three tested concentrations (550 µg/mL: 81.68±3.79 %; 1100 µg/mL: 67.10±3.76 %; 2200 µg/mL: 67.40±1.86 %). In view of the above, the safe use of EEGP from the brazilian northeast could be proven by the cytotoxicity test, and its use as an antioxidant and antibacterial agent has proven to be effective, as an alternative in combating oxidative stress and microorganisms such as S. aureus, which, through the spread and ongoing evolution of drug resistance, generates an active search for effective solutions.

2.
Antibiotics (Basel) ; 12(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37998767

RESUMO

The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 µg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 µg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 µg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.

3.
Sci Rep ; 13(1): 17394, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833301

RESUMO

The NorA efflux pump of Staphylococcus aureus is known to play a major role in the development of resistance against quinolone drugs by reducing their concentration inside target pathogens. The objective of this study was to evaluate the ability of tannic acid to inhibit the gene expression of the NorA efflux pump in Staphylococcus aureus and to evaluate the in silico effect on the pump. Efflux pump inhibition was evaluated by fluorimetry. The checkerboard method evaluates the effect of the test substance in combination with an antimicrobial at different concentrations. To gene expression evaluation NorA the assay was performed using: a sub-inhibitory concentration preparation (MIC/4) of the antibiotic; a sub-inhibitory concentration preparation (MIC/4) of the antibiotic associated with tannic acid at a sub-inhibitory concentration (MIC/4). In this study, docking simulations were performed by the SWISSDOCK webserver. The ability of tannic acid to inhibit the NorA efflux pump can be related to both the ability to inhibit the gene expression of this protein, acting on signaling pathways involving the ArlRS membrane sensor. As well as acting directly through direct interaction with the NorA protein, as seen in the approach and in silico and in vitro per checkerboard method and fluorimetry of bromide accumulated in the cell.


Assuntos
Ciprofloxacina , Infecções Estafilocócicas , Humanos , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Staphylococcus aureus , Taninos/farmacologia , Taninos/metabolismo , Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Microbiana
4.
Chem Biol Interact ; 386: 110751, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821044

RESUMO

Multidrug resistance is a significant health problem worldwide, with increasing mortality rates, especially in the last few years. In this context, a consistent effort has been made to discover new antibacterial agents, and evidence points to natural products as the most promising source of bioactive compounds. This research aimed to characterize the antibacterial effect of the essential oil of Etlingera elatior (EOEE) and its major constituents against efflux pump-carrying Staphylococcus aureus strains. The essential oil was extracted from fresh inflorescences by hydrodistillation. Chemical analysis was performed using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography equipped with a flame ionization detector (GC-FID). The strains RN-4220, 1199B, IS-58, and 1199 of S. aureus were used to evaluate the antibacterial activity and the inhibition of efflux pumps. A total of 23 compounds were identified, including dodecanal and 1-dodecanol as major compounds. EOEE and dodecanal showed weak activity against the strains, while 1-dodecanol inhibited bacterial growth at low concentrations, indicating strong antibacterial activity. In addition, this compound potentiated the activity of norfloxacin against S. aureus 1199. In conclusion, 1-dodecanol was identified as the most effective compound of EOEE, showing significant potential to be used in antibacterial drug development.


Assuntos
Óleos Voláteis , Staphylococcus aureus , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Dodecanol/farmacologia
5.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376002

RESUMO

Antimicrobial resistance has become a growing public health concern in recent decades, demanding a search for new effective treatments. Therefore, this study aimed to elucidate the phytochemical composition and evaluate the antibacterial activity of the essential oil obtained from the fruits of Piper tuberculatum Jacq. (EOPT) against strains carrying different mechanisms of antibiotic resistance. Phytochemical analysis was performed using gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of EOPT and its ability to inhibit antibiotic resistance was evaluated through the broth microdilution method. The GC-MS analysis identified 99.59% of the constituents, with ß-pinene (31.51%), α-pinene (28.38%), and ß-cis-ocimene (20.22%) being identified as major constituents. The minimum inhibitory concentration (MIC) of EOPT was determined to assess its antibacterial activity against multidrug-resistant strains of Staphylococcus aureus (IS-58, 1199B, K2068, and K4100). The compound showed a MIC of ≥ 1024 µg/mL, suggesting a lack of intrinsic antibacterial activity. However, when the EOPT was associated with antibiotics and EtBr, a significant decrease in antibiotic resistance was observed, indicating the modulation of efflux pump activity. This evidence was corroborated with the observation of increased fluorescent light emission by the bacterial strains, indicating the involvement of the NorA and MepA efflux pumps. Additionally, the significant potentiation of ampicillin activity against the S. aureus strain K4414 suggests the ß-lactamase inhibitory activity of EOPT. These results suggest that the essential oil from P. tuberculatum fruits has antibiotic-enhancing properties, with a mechanism involving the inhibition of efflux pumps and ß-lactamase in MDR S. aureus strains. These findings provide new perspectives on the potential use of EOPT against antibiotic resistance and highlight the importance of Piper species as sources of bioactive compounds with promising therapeutic activities against MDR bacteria. Nevertheless, further preclinical (in vivo) studies remain necessary to confirm these in vitro-observed results.

6.
Plants (Basel) ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111810

RESUMO

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.

7.
Life (Basel) ; 13(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36836697

RESUMO

Anthropogenic pollution by trace metals in aquatic environments in semiarid zones is a critical area of investigation. The objective of this study was to investigate the concentration and spatial distribution of trace metals in surface sediments in the Rosário reservoir, which is affected by the intensive aquaculture of Tilápia-do-Nilo (Oreochromis niloticus). Sediment samples were collected in three different areas, postculture (PCTV), cultivation (CTV) and control (CTRL) in the dry season in 2019. The granulometric composition, organic matter and concentrations of Fe, Mn, Zn, Cu, Cr, Cd, Pb and Ni metals were determined. Multivariate statistics were used. Geochemical and ecotoxicological indices and a comparison with sediment quality guidelines (SQG) were used. The sediment was characterized by silty clay loam with an average organic matter of 18.76 ± 4.27. The analytical merit figures demonstrated accuracy (metal recoveries in certified standards) between 89 to 99% and high precision (RSD < 5%). The concentration ranges for the metals were Fe: 0.11-0.85 (%), Mn: 14.46-86.91, Zn: 2.6-220.56, Cu: 26.89-98.75, Cr: 60.18-76.06, Cd: 0.38-0.59, Pb: 18.13-43.13, and Ni: 34.4-46.75, all in (mg/kg-1). The highest concentration values were found in the CTV areas (Fe: 40 ± 0.22, Mn: 66.48 ± 19.11, Zn: 114.83 ± 59.75 and Cr: 70.85 ± 2.62) and PCTV (Cd: 0.53 ± 0.04, Cu: 71.83 ± 21.20, Pb: 33.71 ± 4.34 and Ni: 44.60 ± 1.79). Pearson's correlation, hierarchical cluster analysis and principal component analysis confirmed the influence of fish farming on metals. Only Ni presented concentration values higher than the reference value established in the SQG. Thus, considering the probable geochemical and ecotoxicological effects, they comprise the two lowest levels of impact.

8.
Curr Pharm Des ; 29(5): 323-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515045

RESUMO

Antibiotic resistance can be characterized, in biochemical terms, as an antibiotic's inability to reach its bacterial target at a concentration that was previously effective. Microbial resistance to different agents can be intrinsic or acquired. Intrinsic resistance occurs due to inherent functional or structural characteristics of the bacteria, such as antibiotic-inactivating enzymes, nonspecific efflux pumps, and permeability barriers. On the other hand, bacteria can acquire resistance mechanisms via horizontal gene transfer in mobile genetic elements such as plasmids. Acquired resistance mechanisms include another category of efflux pumps with more specific substrates, which are plasmid-encoded. Efflux pumps are considered one of the main mechanisms of bacterial resistance to antibiotics and biocides, presenting themselves as integral membrane transporters. They are essential in both bacterial physiology and defense and are responsible for exporting structurally diverse substrates, falling into the following main families: ATP-binding cassette (ABC), multidrug and toxic compound extrusion (MATE), major facilitator superfamily (MFS), small multidrug resistance (SMR) and resistance-nodulation-cell division (RND). The Efflux pumps NorA and Tet(K) of the MFS family, MepA of the MATE family, and MsrA of the ABC family are some examples of specific efflux pumps that act in the extrusion of antibiotics. In this review, we address bacterial efflux pump inhibitors (EPIs), including 1,8-naphthyridine sulfonamide derivatives, given the pre-existing knowledge about the chemical characteristics that favor their biological activity. The modification and emergence of resistance to new EPIs justify further research on this theme, aiming to develop efficient compounds for clinical use.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sulfonamidas/farmacologia , Bactérias , Antibacterianos/farmacologia , Sulfanilamida/farmacologia , Naftiridinas/farmacologia , Testes de Sensibilidade Microbiana
9.
J Bioenerg Biomembr ; 53(4): 489-498, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34159523

RESUMO

Undue exposure to antimicrobials has led to the acquisition and development of sophisticated bacterial resistance mechanisms, such as efflux pumps, which are able to expel or reduce the intracellular concentration of various antibiotics, making them ineffective. Therefore, inhibiting this mechanism is a promising way to minimize the phenomenon of resistance in bacteria. In this sense, the present study sought to evaluate the activity of the Carvacrol (CAR) and Thymol (THY) terpenes as possible Efflux Pump Inhibitors (EPIs), by determining the Minimum Inhibitory Concentration (MIC) and the association of these compounds in subinhibitory concentrations with the antibiotic Norfloxacin and with Ethidium Bromide (EtBr) against strains SA-1199 (wild-type) and SA-1199B (overexpresses NorA) of Staphylococcus aureus. In order to verify the interaction of the terpenes with the NorA efflux protein, an in silico molecular modeling study was carried out. The assays used to obtain the MIC of CAR and THY were performed by broth microdilution, while the Efflux Pump inhibitory test was performed by the MIC modification method of the antibiotic Norfloxacin and EtBr. docking was performed using the Molegro Virtual Docker (MVD) program. The results of the study revealed that CAR and THY have moderate bacterial activity and are capable of reducing the MIC of Norfloxacin antibiotic and EtBr in strains of S. aureus carrying the NorA efflux pump. The docking results showed that these terpenes act as possible competitive NorA inhibitors and can be investigated as adjuvants in combined therapies aimed at reducing antibiotic resistance.


Assuntos
Cimenos/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Norfloxacino/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Timol/uso terapêutico , Cimenos/farmacologia , Norfloxacino/farmacologia , Timol/farmacologia
10.
J Bioenerg Biomembr ; 53(2): 149-156, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33635515

RESUMO

The present study aimed to evaluate the in vitro efflux pump inhibitory capacity of hydroxyamines derived from lapachol and norlachol, where compounds 3, 4, and 5 were tested against the S. aureus strains: RN4220 carrying the pUL5054 plasmid; and IS-58, endowed with the PT181 plasmid. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial action of the substances was quantified by determining the Minimum Inhibitory Concentration (MIC), while a microdilution assay was carried out to ascertain efflux pump inhibition of Staphylococcus aureus strains carrying the MsrA macrolide and the TetK tetracycline efflux pumps with the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis by an ANOVA test and Bonferroni post hoc test. The MIC from the substances exhibited a value ≥ 1024 µg/mL. However, a significant reduction (p < 0.0001) of the erythromycin, tetracycline and ethidium bromide MIC was demonstrated when these were in combination with the substances, with this effect being due to a supposed efflux pump inhibition. The tested substances demonstrated effectiveness at decreasing the MIC of erythromycin, tetracycline and ethidium bromide, potentially by inhibiting the MsrA macrolide and the TetK tetracycline efflux pumps present in the tested S. aureus strains.


Assuntos
Antibacterianos/uso terapêutico , Naftoquinonas/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Naftoquinonas/farmacologia
11.
Food Chem ; 337: 127776, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777574

RESUMO

Staphylococcus aureus is a Gram-positive bacterium responsible for a number of diseases and has demonstrated resistance to conventional antibiotics. This study aimed to evaluate the antibacterial activity of eugenol and its derivatives allylbenzene, 4-allylanisole, isoeugenol and 4-allyl-2,6-dimethoxyphenol against the S. aureus NorA efflux pump (EP) in association with norfloxacin and ethidium bromide. The antibacterial activity of the compounds was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC). A reduction in the MIC of ethidium bromide (a substrate for several efflux pumps) or norfloxacin was used as a parameter of EP inhibition. Molecular modeling studies were used to predict the 3D structure and analyze the interaction of selected compounds with the binding pocket of the NorA efflux pump. Except for 4-allylanisole and allylbenzene, the compounds presented clinically effective antibacterial activity. When associated with norfloxacin against the SA 1199B strain, 4-allyl-2,6-dimethoxyphenol eugenol and isoeugenol caused significant reduction in the MIC of the antibiotic, demonstrating synergistic effects. Similar effects were observed when 4-allyl-2,6-dimethoxyphenol, allylbenzene and isoeugenol were associated with ethidium bromide. Together, these findings indicate a potential inhibition of the NorA pump by eugenol and its derivatives. This in vitro evidence was corroborated by docking results demonstrating favorable interactions between 4-allyl-2,6-dimetoxypheno and the NorA pump mediated by hydrogen bonds and hydrophobic interactions. In conclusion, eugenol derivatives have the potential to be used in antibacterial drug development in strains carrying the NorA efflux pump.


Assuntos
Proteínas de Bactérias/metabolismo , Eugenol/análogos & derivados , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Staphylococcus aureus/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Etídio/farmacologia , Eugenol/metabolismo , Eugenol/farmacologia , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Norfloxacino/farmacologia , Staphylococcus aureus/efeitos dos fármacos
12.
Infect Genet Evol ; 84: 104370, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32445918

RESUMO

Isolated substances and those organically synthesized have stood out over the years for their therapeutic properties, including their antibacterial activity. These compounds may be an alternative to the production of new antibiotics or may have the ability to potentiate the action of preexisting ones. In this context, the objective of this study was to evaluate the in vitro antibacterial and efflux pump inhibitory activity of hydroxyamines derived from lapachol and norlachol, more specifically the compounds 2-(2-Hydroxyethylamino)-3-(3-methyl-2-butenyl)-1,4 dihydro-1,4-naphthalenedione, 2-(2-Hydroxyethylamino)-3-(2-methyl-propenyl)[1,4]naphthoquinone and 2-(3-Hydroxypropylamino)-3-(3-methyl-2-butenyl)-[1,4]naphthoquinone, against Staphylococcus aureus strains carrying the NorA efflux pump mechanism. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol, obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. All three molecules underwent a virtual structure-based analysis (docking). The antibacterial activity of the substances was measured by determining their Minimum Inhibitory Concentration (MIC) and a microdilution assay was performed to verify efflux pump inhibition using the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis using an analysis of variance (ANOVA) followed by Bonferroni's post hoc test. The substances obtained MIC values ≥1024 µg/mL, however, a significant reduction of their MICs was observed when the substances were associated with norfloxacin and ethidium bromide, with this effect being attributed to efflux pump inhibition. Following a virtual analysis based on its structure (docking), information regarding the affinity of new ligands for the ABC efflux pump were observed, thus contributing to the understanding of their mechanism of molecular interactions and the discovery of functional ligands associated with a reduction in bacterial resistance.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Naftoquinonas/química , Norfloxacino/química , Norfloxacino/farmacologia , Staphylococcus aureus/genética
13.
Chem Biodivers ; 16(9): e1900344, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31348574

RESUMO

The aim of this study was to investigate the antibacterial activity of red propolis and resin and their association with standard antibiotics to evaluate possible differences of activity. We also submitted red propolis and the resin to a HPLC analysis to confirm the botanical origin. The extracts were tested against P. aeruginosa and S. aureus alone and in association with gentamicin and imipenem. The HPLC analysis identified seven compounds with six of them present in both substances. The lowest MIC values obtained in this study were observed against S. aureus. In general, MIC values showed to be lower for red propolis against all species tested in comparison to resin. Despite the synergistic behavior to be similar for both substances, we observed that inhibitory concentrations of drugs were lower when associated with red propolis in comparison to resin.


Assuntos
Antibacterianos/farmacologia , Dalbergia/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Própole/farmacologia , Resinas Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Brasil , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Própole/química , Própole/isolamento & purificação , Resinas Vegetais/química , Resinas Vegetais/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
14.
Chem Phys Lipids ; 219: 23-27, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30710506

RESUMO

The bioprospection of zootherapeutic products can be a source of new drugs and to the creation of new strategies of natural resources conservation and management of endangered species. This fact is supported by ethnobiological studies indicating that the usage of zootherapeutic products can be replaced by the use of natural products isolated from plants and domestic animals. The emergence of antibiotic-resistant bacteria has increased the need for research for new active principles. Ethnoveterinary studies in Brazil have shown that Sus scrofa domesticus fat is used for diseases associated with bacterial pathogens. The objective of this study was to identify the chemical composition and to evaluate the antibacterial activity of the fixed oil of Sus scrofa domesticus (OFSC) when used alone or associated with antibiotics. In the analysis of the oil composition, there were 4 constituents identified, with oleic acid being the major constituent. The OFSC did not present antibacterial activity when tested alone; however, it showed synergism in the modulating activity when associated with antibiotics Amikacin and Amoxicillin.


Assuntos
Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Tecido Adiposo/metabolismo , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/farmacologia , Feminino , Masculino , Testes de Sensibilidade Microbiana , Pseudomonas/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Staphylococcus/efeitos dos fármacos , Staphylococcus/isolamento & purificação , Sus scrofa
15.
Food Chem ; 262: 72-77, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29751924

RESUMO

This study was carried out to test the essential oil from C. ambrosioides leaves and its main constituent, α-Terpinene, in an antibacterial activity assay. As well, it was evaluated ability reduce resistance to norfloxacin and ethidium bromide was compared the Staphylococcus aureus 1199B whith 1199 wild type strain. The MIC of the C. ambrosioides essential oil and α-Terpinene were determined by microdilution method. The MIC of the essential oil and α-Terpinene presented a value ≥ 1024 µg/mL. However, when associated with antibacterials, the essential oil from C. ambrosioides leaves significantly reduced the MIC of antibiotics and ethidium bromide, characterizing an efflux pump inhibition. The C. ambrosioides essential oil, despite having no direct antibacterial activity against the S. aureus 1199B strain, showed a potentiating action when associated with antibacterial agents, this being attributed to an inhibition of efflux pumps.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Chenopodium ambrosioides/química , Monoterpenos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Óleos Voláteis/farmacologia , Monoterpenos Cicloexânicos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Óleos Voláteis/química , Folhas de Planta/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
16.
Environ Sci Pollut Res Int ; 25(11): 10353-10361, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28597384

RESUMO

Bioactive phytocompounds are studied by several bioactivities demonstrated, as their cytotoxic effects. The aim of this work was to evaluate the phytochemical profile, the toxic effect using the Drosophila melanogaster animal model and the anti-inflammatory and antimicrobial effect of the Alternanthera brasiliana (EEAB) ethanol extract. The phytochemical profile was performed using HPLC. The cytotoxic effect was evaluated in vivo using D. melanogaster. The anti-inflammatory effect was determined by neurogenic and antiedematogenic assays, and the antimicrobial activity was assayed using a microdilution method to determine the minimum inhibitory concentration (MIC) of the EEAB alone and in association with antibiotics. The main compound identified on the EEAB was luteolin (1.93%). Its cytotoxic effect was demonstrated after 24 h in the concentrations of 10, 20 and 40 mg/mL. The extract demonstrated an antiedematogenic effect, with a reduction of the edema between 35.57 and 64.17%. The MIC of the extract was ≥1.024 µg/mL, thus being considered clinically irrelevant. However, when the EEAB was associated with gentamicin, a synergism against all bacterial strains assayed was observed: Staphylococcus aureus (SA10), Escherichia coli (EC06) and Pseudomonas aeruginosa (PA24). Due to these results, the EEAB demonstrated a low toxicity in vivo and anti-inflammatory and synergistic activities. These are promising results, mainly against microbial pathogens, and the compounds identified can be a source of carbon backbones for the discovery and creation of new drugs.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Amaranthaceae/química , Animais , Anti-Infecciosos/química , Escherichia coli/química , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Pseudomonas aeruginosa/química , Staphylococcus aureus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...