Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neuroimage Clin ; 23: 101902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233953

RESUMO

OBJECTIVE: To compare the performance of different methods for determining hippocampal atrophy rates using longitudinal MRI scans in aging and Alzheimer's disease (AD). BACKGROUND: Quantifying hippocampal atrophy caused by neurodegenerative diseases is important to follow the course of the disease. In dementia, the efficacy of new therapies can be partially assessed by measuring their effect on hippocampal atrophy. In radiotherapy, the quantification of radiation-induced hippocampal volume loss is of interest to quantify radiation damage. We evaluated plausibility, reproducibility and sensitivity of eight commonly used methods to determine hippocampal atrophy rates using test-retest scans. MATERIALS AND METHODS: Manual, FSL-FIRST, FreeSurfer, multi-atlas segmentation (MALF) and non-linear registration methods (Elastix, NiftyReg, ANTs and MIRTK) were used to determine hippocampal atrophy rates on longitudinal T1-weighted MRI from the ADNI database. Appropriate parameters for the non-linear registration methods were determined using a small training dataset (N = 16) in which two-year hippocampal atrophy was measured using test-retest scans of 8 subjects with low and 8 subjects with high atrophy rates. On a larger dataset of 20 controls, 40 mild cognitive impairment (MCI) and 20  AD patients, one-year hippocampal atrophy rates were measured. A repeated measures ANOVA analysis was performed to determine differences between controls, MCI and AD patients. For each method we calculated effect sizes and the required sample sizes to detect one-year volume change between controls and MCI (NCTRL_MCI) and between controls and AD (NCTRL_AD). Finally, reproducibility of hippocampal atrophy rates was assessed using within-session rescans and expressed as an average distance measure DAve, which expresses the difference in atrophy rate, averaged over all subjects. The same DAve was used to determine the agreement between different methods. RESULTS: Except for MALF, all methods detected a significant group difference between CTRL and AD, but none could find a significant difference between the CTRL and MCI. FreeSurfer and MIRTK required the lowest sample sizes (FreeSurfer: NCTRL_MCI = 115, NCTRL_AD = 17 with DAve = 3.26%; MIRTK: NCTRL_MCI = 97, NCTRL_AD = 11 with DAve = 3.76%), while ANTs was most reproducible (NCTRL_MCI = 162, NCTRL_AD = 37 with DAve = 1.06%), followed by Elastix (NCTRL_MCI = 226, NCTRL_AD = 15 with DAve = 1.78%) and NiftyReg (NCTRL_MCI = 193, NCTRL_AD = 14 with DAve = 2.11%). Manually measured hippocampal atrophy rates required largest sample sizes to detect volume change and were poorly reproduced (NCTRL_MCI = 452, NCTRL_AD = 87 with DAve = 12.39%). Atrophy rates of non-linear registration methods also agreed best with each other. DISCUSSION AND CONCLUSION: Non-linear registration methods were most consistent in determining hippocampal atrophy and because of their better reproducibility, methods, such as ANTs, Elastix and NiftyReg, are preferred for determining hippocampal atrophy rates on longitudinal MRI. Since performances of non-linear registration methods are well comparable, the preferred method would mostly depend on computational efficiency.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Hipocampo/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Atrofia/patologia , Disfunção Cognitiva/diagnóstico por imagem , Bases de Dados Factuais , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Masculino
2.
Clin Neurophysiol ; 130(5): 856-862, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30902439

RESUMO

OBJECTIVE: We investigated the potential added value of high-density resting-state EEG by addressing differences with healthy individuals and associations with Fugl-Meyer motor assessment of the upper extremity (FM-UE) scores in chronic stroke. METHODS: Twenty-one chronic stroke survivors with initial upper limb paresis and eleven matched controls were included. Group differences regarding resting-state EEG parameters (Delta Alpha ratio (DAR) and pairwise-derived Brain Symmetry Index (BSI)) and associations with FM-UE were investigated, as well as lateralization of BSI and the value of different frequency bands. RESULTS: Chronic stroke survivors showed higher BSI compared to controls (p < 0.001), most pronounced in delta and theta frequency bands (p < 0.0001; p < 0.001). In the delta and theta band, BSI was significantly negatively associated with FM-UE (both p = 0.008) corrected for confounding factors. DAR showed no differences between groups nor association with FM-UE. Directional BSI showed increased power in the affected versus the unaffected hemisphere. CONCLUSIONS: Asymmetry in spectral power between hemispheres was present in chronic stroke, most pronounced in low frequencies and related to upper extremity motor function deficit. SIGNIFICANCE: BSI is related to motor impairment and higher in chronic stroke patients compared to healthy controls, suggesting that BSI may be a marker of selective motor control.


Assuntos
Encéfalo/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Idoso , Avaliação da Deficiência , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Neuroimage Clin ; 22: 101727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825711

RESUMO

BACKGROUND: Tumor segmentation of glioma on MRI is a technique to monitor, quantify and report disease progression. Manual MRI segmentation is the gold standard but very labor intensive. At present the quality of this gold standard is not known for different stages of the disease, and prior work has mainly focused on treatment-naive glioblastoma. In this paper we studied the inter-rater agreement of manual MRI segmentation of glioblastoma and WHO grade II-III glioma for novices and experts at three stages of disease. We also studied the impact of inter-observer variation on extent of resection and growth rate. METHODS: In 20 patients with WHO grade IV glioblastoma and 20 patients with WHO grade II-III glioma (defined as non-glioblastoma) both the enhancing and non-enhancing tumor elements were segmented on MRI, using specialized software, by four novices and four experts before surgery, after surgery and at time of tumor progression. We used the generalized conformity index (GCI) and the intra-class correlation coefficient (ICC) of tumor volume as main outcome measures for inter-rater agreement. RESULTS: For glioblastoma, segmentations by experts and novices were comparable. The inter-rater agreement of enhancing tumor elements was excellent before surgery (GCI 0.79, ICC 0.99) poor after surgery (GCI 0.32, ICC 0.92), and good at progression (GCI 0.65, ICC 0.91). For non-glioblastoma, the inter-rater agreement was generally higher between experts than between novices. The inter-rater agreement was excellent between experts before surgery (GCI 0.77, ICC 0.92), was reasonable after surgery (GCI 0.48, ICC 0.84), and good at progression (GCI 0.60, ICC 0.80). The inter-rater agreement was good between novices before surgery (GCI 0.66, ICC 0.73), was poor after surgery (GCI 0.33, ICC 0.55), and poor at progression (GCI 0.36, ICC 0.73). Further analysis showed that the lower inter-rater agreement of segmentation on postoperative MRI could only partly be explained by the smaller volumes and fragmentation of residual tumor. The median interquartile range of extent of resection between raters was 8.3% and of growth rate was 0.22 mm/year. CONCLUSION: Manual tumor segmentations on MRI have reasonable agreement for use in spatial and volumetric analysis. Agreement in spatial overlap is of concern with segmentation after surgery for glioblastoma and with segmentation of non-glioblastoma by non-experts.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Adulto , Idoso , Neoplasias Encefálicas/epidemiologia , Estudos de Coortes , Feminino , Glioma/epidemiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Variações Dependentes do Observador , Distribuição Aleatória
4.
Clin Transl Oncol ; 21(2): 178-186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876759

RESUMO

BACKGROUND: Hippocampal avoidance prophylactic cranial irradiation (HA-PCI) techniques have been developed to reduce radiation damage to the hippocampus. An inter-observer hippocampus delineation analysis was performed and the influence of the delineation variability on dose to the hippocampus was studied. MATERIALS AND METHODS: For five patients, seven observers delineated both hippocampi on brain MRI. The intra-class correlation (ICC) with absolute agreement and the generalized conformity index (CIgen) were computed. Median surfaces over all observers' delineations were created for each patient and regional outlining differences were analysed. HA-PCI dose plans were made from the median surfaces and we investigated whether dose constraints in the hippocampus could be met for all delineations. RESULTS: The ICC for the left and right hippocampus was 0.56 and 0.69, respectively, while the CIgen ranged from 0.55 to 0.70. The posterior and anterior-medial hippocampal regions had most variation with SDs ranging from approximately 1 to 2.5 mm. The mean dose (Dmean) constraint was met for all delineations, but for the dose received by 1% of the hippocampal volume (D1%) violations were observed. CONCLUSION: The relatively low ICC and CIgen indicate that delineation variability among observers for both left and right hippocampus was large. The posterior and anterior-medial border have the largest delineation inaccuracy. The hippocampus Dmean constraint was not violated.


Assuntos
Neoplasias Encefálicas/prevenção & controle , Irradiação Craniana/efeitos adversos , Hipocampo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Neoplasias Encefálicas/secundário , Ensaios Clínicos Fase III como Assunto , Conjuntos de Dados como Assunto , Feminino , Humanos , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Carcinoma de Pequenas Células do Pulmão/secundário
5.
IEEE Trans Biomed Eng ; 63(12): 2550-2551, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27875124

RESUMO

Multimodal source imaging is an emerging field in biomedical engineering. Its central goal is to combine different imaging modalities in a single model or data representation, such that the combination provides an enhanced insight into the underlying physiological organ, compared to each modality separately. It requires advanced signal acquisition and processing techniques and has applications in cognitive neuroscience, clinical neuroscience and electrocardiology. Therefore, it belongs to the heart of biomedical engineering.


Assuntos
Imagem Multimodal , Processamento de Sinais Assistido por Computador , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
6.
J Neurosci Methods ; 229: 97-107, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24768574

RESUMO

fMRI signals during rest are strongly correlated with heart rate variations. These heart rate/fMRI associations may influence the results of brain activation studies, particularly if heart rate is affected by the task. To assess the contribution of task-related heart rate changes on fMRI brain activation related to executive processing, we co-registered the electrocardiogram with fMRI in 91 subjects during an interference task (color-word Stroop) and during a planning task (Tower of London; ToL). We found that both Stroop interference and ToL planning significantly increased heart rate in the scanner and confirmed significant main effects of heart rate regressors on the fMRI signals. Nevertheless, statistical contrasts that test for increased fMRI during Stroop interference and ToL planning were not significantly influenced by inclusion of heart rate regressors. We conclude therefore that fMRI changes associated with heart rate changes do not impact strongly on higher-order fMRI effects in these commonly used executive function tasks, but routinely adding a correction seems prudent.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Frequência Cardíaca/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/irrigação sanguínea , Eletrocardiografia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Sistema de Registros , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Teste de Stroop
7.
Mult Scler ; 20(8): 1058-65, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24347184

RESUMO

BACKGROUND: Cognitive dysfunction in multiple sclerosis (MS) has a large impact on the quality of life and is poorly understood. OBJECTIVE: The aim of this study was to investigate functional network integrity in MS, and relate this to cognitive dysfunction and physical disability. METHODS: Resting state fMRI scans were included of 128 MS patients and 50 controls. Eigenvector centrality mapping (ECM) was applied, a graph analysis technique that ranks the importance of brain regions based on their connectivity patterns. Significant ECM changes were related to physical disability and cognitive dysfunction. RESULTS: In MS patients, ECM values were increased in bilateral thalamus and posterior cingulate (PCC) areas, and decreased in sensorimotor and ventral stream areas. Sensorimotor ECM decreases were related to higher EDSS (rho = -0.24, p = 0.007), while ventral stream decreases were related to poorer average cognition (rho = 0.23, p = 0.009). The thalamus displayed increased connectivity to sensorimotor and ventral stream areas. CONCLUSION: In MS, areas in the ventral stream and sensorimotor cortex appear to become less central in the entire functional network of the brain, which is associated with clinico-cognitive dysfunction. The thalamus, however, displays increased connectivity with these areas. These findings may aid in further elucidating the function of functional reorganization processes in MS.


Assuntos
Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Cognição , Atividade Motora , Esclerose Múltipla/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Avaliação da Deficiência , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/psicologia , Rede Nervosa/diagnóstico por imagem , Qualidade de Vida , Córtex Sensório-Motor/fisiopatologia , Tálamo/fisiopatologia
9.
Clin Neurophysiol ; 124(1): 107-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22832101

RESUMO

OBJECTIVE: To evaluate the viability of MEG source reconstruction in the presence of large interference due to orthodontic material. METHODS: We recorded the magnetic fields following a simple hand movement and following electrical stimulation of the median nerve (somatosensory evoked field -SEF). These two tasks were performed twice, once with and once without artificial dental artefacts. Temporal Signal Space Separation (tSSS) was applied to spatially filter the data and source reconstruction was performed according to standard procedures for pre-surgical mapping of eloquent cortex, applying dipole fitting to the SEF data and beamforming to the hand movement data. RESULTS: Comparing the data with braces to the data without braces, the observed distances between the activations following hand movement in the two conditions were on average 6.4 and 4.5 mm for the left and right hand, respectively, whereas the dipole localisation errors for the SEF were 4.1 and 5.4 mm, respectively. Without tSSS it was generally not possible to obtain reliable dipole fit or beamforming results when wearing braces. CONCLUSION: We confirm that tSSS is a required and effective pre-processing step for data recorded with the Elekta-MEG system. Moreover, we have shown that even the presence of large interference from orthodontic material does not significantly alter the results from dipole localisation or beamformer analysis, provided the data are spatially filtered by tSSS. SIGNIFICANCE: State-of-the-art signal processing techniques enable the use of MEG for pre-surgical evaluation in a much larger clinical population than previously thought possible.


Assuntos
Artefatos , Magnetoencefalografia , Aparelhos Ortodônticos , Adulto , Algoritmos , Mapeamento Encefálico/métodos , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Estudos de Viabilidade , Feminino , Mãos/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Nervo Mediano/fisiologia , Metais , Pessoa de Meia-Idade , Método de Monte Carlo , Movimento/fisiologia
10.
Neuroimage ; 60(4): 2042-53, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22369995

RESUMO

EEG-correlated functional MRI (EEG-fMRI) has been used to indicate brain regions associated with interictal epileptiform discharges (IEDs). This technique enables the delineation of the complete epileptiform network, including multifocal and deeply situated cortical areas. Before EEG-fMRI can be used as an additional diagnostic tool in the preoperative work-up, its added value should be assessed in relation to intracranial EEG recorded from depth electrodes (SEEG) or from the cortex (ECoG), currently the clinical standard. In this study, we propose a framework for the analysis of the SEEG data to investigate in a quantitative way whether EEG-fMRI reflects the same cortical areas as identified by the IEDs present in SEEG recordings. For that purpose, the data of both modalities were analyzed with a general linear model at the same time scale and within the same spatial domain. The IEDs were used as predictors in the model, yielding for EEG-fMRI the brain voxels that were related to the IEDs and, similarly for SEEG, the electrodes that were involved. Finally, the results of the regression analysis were projected on the anatomical MRI of the patients. To explore the usefulness of this quantitative approach, a sample of five patients was studied who both underwent EEG-fMRI and SEEG recordings. For clinical validation, the results of the SEEG analysis were compared to the standard visual review of IEDs in SEEG and to the identified seizure onset zone, the resected area, and outcome of surgery. SEEG analysis revealed a spatial pattern for the most frequent and dominant IEDs present in the data of all patients. The electrodes with the highest correlation values were in good concordance with the electrodes that showed maximal amplitude during those events in the SEEG recordings. These results indicate that the analysis of SEEG data at the time scale of EEG-fMRI, using the same type of regression model, is a promising way to validate EEG-fMRI data. In fact, the BOLD areas with a positive hemodynamic response function were closely related to the spatial pattern of IEDs in the SEEG recordings in four of the five patients. The areas of significant BOLD that were not located in the vicinity of depth electrodes, were mainly characterized by negative hemodynamic responses. Furthermore, the area with a positive hemodynamic response function overlapped with the resected area in three patients, while it was located at the edge of the resection area for one. To conclude, the results of this study encourage the application of EEG-fMRI to guide the implantation of depth electrodes as prerequisite for successful epilepsy surgery.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
J Neurosci Methods ; 183(1): 63-71, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19591868

RESUMO

The inverse problem of multi-channel MEG/EEG data is considered as a parameter estimation problem. The stability of the solution of the inverse problem, which decreases with the number of included dipoles, can be improved by either adding constraints to the model parameters, or by adding more data of related data sets. The latter approach was taken by Bijma et al. [Bijma F, de Munck JC, Böcker KBE, Huizenga HM, Heethaar RM. The coupled dipole model: an integrated model for multiple MEG/EEG data sets. NeuroImage 2004;23(3):890-904; Bijma F, de Munck JC, Huizenga HM, Heethaar RM, Nehorai A. Simultaneous estimation and testing in multiple MEG data sets. IEEE Trans SP 2005;53(9):3449-60] by introducing coupling matrices that link dipole parameters and source time functions of different data sets. Here, the theoretical foundations of the coupled dipole model are explored and the MUSIC algorithm is generalised to the analysis of multiple related data sets. Similar to the MUSIC algorithm, the number of sources and the number of constraints are derived from the data by considering the minimum possible residual error as a function of the number of sources and constraints. However, contrary to the MUSIC algorithm, where the minimum residual error can be obtained from an SVD analysis of a two-way data matrix, here we deal with multiple data sets and therefore three-way matrix analysis is used. From a simulation study it appears that the number of sources and constraints can be clearly determined from a generalised SVD analysis. The generalisation of the MUSIC algorithm to three-way data gives reasonable estimates of the dipole parameters. These results can be used in the simultaneous analysis of MEG/EEG data of multiple subjects, multiples data sets of the same subject or models where subsequent trials of data show habituation effects.


Assuntos
Algoritmos , Modelos Neurológicos , Modelos Estatísticos , Música , Mapeamento Encefálico , Simulação por Computador , Eletroencefalografia , Humanos , Magnetoencefalografia
12.
Neuroimage ; 47(1): 69-76, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19376236

RESUMO

In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Adulto , Ritmo alfa , Feminino , Humanos , Modelos Lineares , Masculino
13.
Brain ; 132(Pt 1): 213-24, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18952674

RESUMO

In this study we examined changes in the large-scale structure of resting-state brain networks in patients with Alzheimer's disease compared with non-demented controls, using concepts from graph theory. Magneto-encephalograms (MEG) were recorded in 18 Alzheimer's disease patients and 18 non-demented control subjects in a no-task, eyes-closed condition. For the main frequency bands, synchronization between all pairs of MEG channels was assessed using a phase lag index (PLI, a synchronization measure insensitive to volume conduction). PLI-weighted connectivity networks were calculated, and characterized by a mean clustering coefficient and path length. Alzheimer's disease patients showed a decrease of mean PLI in the lower alpha and beta band. In the lower alpha band, the clustering coefficient and path length were both decreased in Alzheimer's disease patients. Network changes in the lower alpha band were better explained by a 'Targeted Attack' model than by a 'Random Failure' model. Thus, Alzheimer's disease patients display a loss of resting-state functional connectivity in lower alpha and beta bands even when a measure insensitive to volume conduction effects is used. Moreover, the large-scale structure of lower alpha band functional networks in Alzheimer's disease is more random. The modelling results suggest that highly connected neural network 'hubs' may be especially at risk in Alzheimer's disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Escalas de Graduação Psiquiátrica , Processamento de Sinais Assistido por Computador
14.
Neuroimage ; 42(1): 112-21, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18539049

RESUMO

Considering that there are several theoretical reasons why fMRI data is correlated to variations in heart rate, these correlations are explored using experimental resting state data. In particular, the possibility is discussed that the "default network", being a brain area that deactivates during non-specific general tasks, is a hemodynamic effect caused by heart rate variations. Of fifteen healthy controls ECG, EEG and fMRI were co-registered. Slice time dependent heart rate regressors were derived from the ECG data and correlated to fMRI using a linear correlation analysis where the impulse response is estimated from the data. It was found that in most subjects substantial correlations between heart rate variations and fMRI exist, both within the brain and at the ventricles. The brain areas with high correlation to heart rate are different from the "default network" and the response functions deviate from the canonical hemodynamic response function. Furthermore, a general negative correlation was found between heart beat intervals (reverse of heart rate) and alpha power. We interpret this finding by assuming that subject's state varies between drowsiness and wakefulness. Finally, given this large correlation, we re-examined the contribution of heart rate variations to earlier reported fMRI/alpha band correlations, by adding heart rate regressors as confounders. It was found that inclusion of these confounders most often had a negligible effect. From its strong correlation to alpha power, we conclude that the heart rate variations contain important physiological information about subject's resting state. However, it does not provide a full explanation of the behaviour of the "default network". Its application as confounder in fMRI experiments is a relatively small computational effort, but may have a substantial impact in paradigms where heart rate is controlled by the stimulus.


Assuntos
Ritmo alfa/métodos , Encéfalo/fisiologia , Frequência Cardíaca/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Modelos Neurológicos , Descanso/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino
15.
Clin Neurophysiol ; 118(11): 2437-50, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17889599

RESUMO

OBJECTIVE: Co-registration of EEG (electroencephalogram) and fMRI (functional magnetic resonance imaging) remains a challenge due to the large artifacts induced on the EEG by the MR (magnetic resonance) sequence magnetic fields. Thus, we present an algorithm, based on the average-subtraction method, which is able to correct EEG data for gradient and pulse artifacts. METHODS: MR sequence timing parameters are estimated from the EEG data and both slice and volume artifact templates are subtracted from the data. A clustering algorithm is proposed to account for the variability of the pulse artifact. RESULTS: The algorithm is able to keep the spontaneous EEG as well as visual evoked potentials (VEPs), while removing gradient and pulse artifacts with only a subtraction of selectively averaged data. In the frequency domain, the artifact frequencies are strongly attenuated. Estimated MR sequence time parameters showed that the correction is extremely sensitive to the slice time value. Pulse artifact clustering showed that most of the variability is due to the time jitter of the pulse artifact markers. CONCLUSIONS: Selective subtraction of averages in combination with proper time alignment is enough to remove most of the MR-induced artifacts. SIGNIFICANCE: Clean EEG can be obtained from raw signals that are corrupted by MR-induced artifacts during simultaneous EEG-fMRI scanning without using dedicated hardware to synchronize EEG and fMRI clocks.


Assuntos
Artefatos , Eletroencefalografia , Imageamento por Ressonância Magnética , Técnica de Subtração , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Peróxido de Carbamida , Combinação de Medicamentos , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Peróxidos/sangue , Imagens de Fantasmas , Estimulação Luminosa/métodos , Análise de Componente Principal , Análise Espectral , Ureia/análogos & derivados , Ureia/sangue
16.
Neuroimage ; 35(3): 1142-51, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17336548

RESUMO

EEG was recorded during fMRI scanning of 16 normal controls in resting condition with eyes closed. Time variations of the occipital alpha band amplitudes were correlated to the fMRI signal variations to obtain insight into the hemodynamic correlates of the EEG alpha activity. Contrary to earlier studies, no a priori assumptions were made on the expected shape of the alpha band response function (ARF). The ARF of different brain regions and subjects were explored and compared. It was found that: (1) the ARF of the thalamus is mainly positive. (2) The ARFs at the occipital and left and right parietal points are similar in amplitude and timing. (3) The peak time of the thalamus is a few seconds earlier than that of occipital and parietal cortex. (4) No systematic BOLD activity was found preceding the alpha band activity, although in the two subjects with the strongest alpha band power such correlation was present. (5) There is a strong and immediate positive correlation at the eyeball, and a strong negative correlation at the back of the eye. Furthermore, it was found that in one subject the cortical ARF was positive, contrary to the other subjects. Finally, a cluster analysis of the observed ARF, in combination with a Modulated Sine Model (MSM) fit to the estimated ARF, revealed that within the cortex the ARF peak time shows a spatial pattern that may be interpreted as a traveling wave. The spatial pattern of alpha band response function represents the combined effect of local differences in electrical alpha band activity and local differences in the hemodynamic response function (HRF) onto these electrical activities. To disentangle the contributions of both factors, more advanced integration of EEG inverse modeling and hemodynamic response modeling is required in future studies.


Assuntos
Ritmo alfa/métodos , Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Neuroimage ; 32(3): 1335-44, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16815039

RESUMO

Statistical interdependencies between magnetoencephalographic signals recorded over different brain regions may reflect the functional connectivity of the resting-state networks. We investigated topographic characteristics of disturbed resting-state networks in Alzheimer's disease patients in different frequency bands. Whole-head 151-channel MEG was recorded in 18 Alzheimer patients (mean age 72.1 years, SD 5.6; 11 males) and 18 healthy controls (mean age 69.1 years, SD 6.8; 7 males) during a no-task eyes-closed resting state. Pair-wise interdependencies of MEG signals were computed in six frequency bands (delta, theta, alpha1, alpha2, beta and gamma) with the synchronization likelihood (a nonlinear measure) and coherence and grouped into long distance (intra- and interhemispheric) and short distance interactions. In the alpha1 and beta band, Alzheimer patients showed a loss of long distance intrahemispheric interactions, with a focus on left fronto-temporal/parietal connections. Functional connectivity was increased in Alzheimer patients locally in the theta band (centro-parietal regions) and the beta and gamma band (occipito-parietal regions). In the Alzheimer group, positive correlations were found between alpha1, alpha2 and beta band synchronization likelihood and MMSE score. Resting-state functional connectivity in Alzheimer's disease is characterized by specific changes of long and short distance interactions in the theta, alpha1, beta and gamma bands. These changes may reflect loss of anatomical connections and/or reduced central cholinergic activity and could underlie part of the cognitive impairment.


Assuntos
Doença de Alzheimer/fisiopatologia , Magnetoencefalografia , Vias Neurais/fisiopatologia , Idoso , Algoritmos , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Dinâmica não Linear , Descanso/fisiologia
18.
Neuroimage ; 30(1): 203-13, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16290018

RESUMO

Simultaneous recording of electroencephalogram/functional magnetic resonance images (EEG/fMRI) was applied to identify blood oxygenation level-dependent (BOLD) changes associated with spontaneous variations of the alpha rhythm, which is considered the hallmark of the brain resting state. The analysis was focused on inter-subject variability associated with the resting state. Data from 7 normal subjects are presented. Confirming earlier findings, three subjects showed a negative correlation between the BOLD signal and the average power time series within the alpha band (8--12 Hz) in extensive areas of the occipital, parietal and frontal lobes. In small thalamic areas, the BOLD signal was positively correlated with the alpha power. For subjects 3 and 4, who displayed two different states during the data acquisition time, it was shown that the corresponding correlation patterns were different, thus demonstrating the state dependency of the results. In subject 5, the changes in BOLD were observed mainly in the frontal and temporal lobes. Subject 6 only showed positive correlations, thus contradicting the negative BOLD alpha power cortical correlations that were found in most subjects. Results suggest that the resting state varies over subjects and, sometimes, even within one subject. As the resting state plays an important role in many fMRI experiments, the inter-subject variability of this state should be addressed when comparing fMRI results from different subjects.


Assuntos
Ritmo alfa , Córtex Cerebral/fisiologia , Eletroencefalografia , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Oxigênio/sangue , Processamento de Sinais Assistido por Computador , Adulto , Mapeamento Encefálico , Córtex Cerebral/irrigação sanguínea , Feminino , Humanos , Masculino , Padrões de Referência , Sensibilidade e Especificidade , Estatística como Assunto , Tálamo/irrigação sanguínea , Tálamo/fisiologia
19.
Neuroimage ; 20(4): 2291-301, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14683730

RESUMO

The goal of the MEG study was to investigate the influence of tumor treatment on pathological delta activity (1-4 Hz). The treatment consisted of neurosurgery, and in some of the patients, additional radiotherapy. MEG and MR recordings were made both before and after the treatment in 17 patients. The signal power in the delta frequency band was determined for each recording. The malignant tumors were associated with large tumor volumes. Furthermore, both malignant tumors and tumor volume were associated with high signal powers in the delta band, indicating a correlation of delta power with the severity of the lesions. In all patients with high grade tumors, the delta power was lower after the treatment. The sources underlying the delta signals were estimated with an automatic single dipole analysis method. Estimated sources were projected onto MR scans. Preoperatively 14 clusters of equivalent sources describing focal activity were found in 12 out of 17 patients. Thirteen of these clusters were located near the tumor, and one cluster near an edema border. The locations near tumors are plausible and suggest that in general the source estimation was reliable. After the operation, 13 such clusters were found in 12 patients. Eleven clusters were located near the lesion border and one cluster near the edema border. Furthermore a cluster contralateral to the lesion in the other hemisphere indicated that brain lesions can affect the functioning of more distant brain areas than just the peritumoral brain tissue. Of the 12 patients who had preoperatively peritumoral clusters, 11 patients had postoperatively perilesional sources. In these cases the shift in source locations was in general considerably smaller than the dimension of the preoperative tumors. This finding indicates that similar areas generate the pre- and postoperative delta activity. Furthermore, focal delta sources were found in a case without tumor recurrence, and also in cases that most tumor tissue was removed. These findings suggest that the pathology underlying the slow waves is not the presence of the tumor bulk but the structural damage done by the tumors on the surrounding white/gray matter.


Assuntos
Astrocitoma/patologia , Astrocitoma/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Magnetoencefalografia , Meningioma/patologia , Meningioma/terapia , Oligodendroglioma/patologia , Oligodendroglioma/terapia , Adulto , Terapia Combinada , Ritmo Delta , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
20.
Clin Neurophysiol ; 114(11): 2096-106, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14580607

RESUMO

OBJECTIVE: The amplitude-modulation-following response (AMFR) is the frequency component detectable in the electroencephalogram (EEG) or magnetoencephalography (MEG) corresponding to the modulation frequency of an amplitude modulated tone used as a continuous acoustic stimulus. Various properties of the AMFR depend on modulation frequency, suggesting that different generators along the auditory pathway are involved. The present study addresses these issues on the basis of a whole head MEG experiment. METHODS: AM tones with modulators in the 40 Hz and 80 Hz range were presented unilaterally to 10 normal hearing subjects. Biomagnetic responses were recorded with a 151 channel MEG system. The data analysis concentrated on the phase coherence of the responses, group delays and the estimated location of underlying equivalent dipole sources. RESULTS: MEG AMFR is more reliably detected in the 40 Hz than in the 80 Hz range. Both response amplitude and phase coherence indicate clear bilateral activation over the parietal/temporal region. Dipole source analysis confirms that sources are located in or near the auditory cortex. Group delays at 80 Hz are shorter than at 40 Hz. CONCLUSIONS: In both modulation frequency ranges MEG responses are dominated by activity in the auditory cortex, in apparent contrast with EEG data in the literature, pointing to dominant contributions of thalamic sources to the 80 Hz AMFR.


Assuntos
Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos , Magnetoencefalografia , Adolescente , Adulto , Feminino , Lateralidade Funcional/fisiologia , Cabeça , Humanos , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...