Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268986

RESUMO

Composites of magnetite nanoparticles encapsulated with polymers attract interest for many applications, especially as theragnostic agents for magnetic hyperthermia, drug delivery, and magnetic resonance imaging. In this work, magnetite nanoparticles were synthesized by coprecipitation and encapsulated with different polymers (Eudragit S100, Pluronic F68, Maltodextrin, and surfactants) by nano spray drying technique, which can produce powders of nanoparticles from solutions or suspensions. Transmission and scanning electron microscopy images showed that the bare magnetite nanoparticles have 10.5 nm, and after encapsulation, the particles have approximately 1 µm, with size and shape depending on the material's composition. The values of magnetic saturation by SQUID magnetometry and mass residues by thermogravimetric analysis were used to characterize the magnetic content in the materials, related to their magnetite/polymer ratios. Zero-field-cooling and field-cooling (ZFC/FC) measurements showed how blocking temperatures of the powders of the composites are lower than that of bare magnetite, possibly due to lower magnetic coupling, being an interesting system to study magnetic interactions of nanoparticles. Furthermore, studies of cytotoxic effect, hydrodynamic size, and heating capacity for hyperthermia (according to the application of an alternate magnetic field) show that these composites could be applied as a theragnostic material for a non-invasive administration such as nasal.

3.
Int J Pharm ; 565: 123-132, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31075434

RESUMO

The recognition of α-galactosylceramide (αGC), a high-affinity CD1d antigen, by the invariant Natural Killer T (iNKT) lymphocytes results in potent immunostimulatory responses that have been exploited in advanced cancer patients. Therefore, to improve αGC biological activity, several studies vectorized this agonist in PLGA and/or PEG-based nanoparticles. Despite promising findings, these approaches require several steps, from organic solvent decontamination through extrusion in membrane systems. Using a nano spray dryer, we vectorized αGC into a cationic copolymer (dimethylaminoethyl methacrylate, butyl methacrylate and methyl methacrylate - DBM) in a single step process, free of organic solvent. This methodology allowed the production of stable αGC-vectorized nanoparticles (DBM + αGC) with a more potent biological activity than the free agonist. DBM nanoparticles improved in vivo αGC loading into the CD1d molecule and induced a higher frequency of IFN-γ-expressing iNKT cells. Consequently, mice treated with DBM + αGC presented higher levels of serum IFN-γ than those treated with free agonist. Also, vectorized nanoparticles improved αGC ability to control the growth of murine lung metastatic carcinoma. Thus, this is the first study showing that nano spray dryer technology is a simple and alternative approach to enhance iNKT responses.


Assuntos
Portadores de Fármacos/administração & dosagem , Galactosilceramidas/administração & dosagem , Nanotecnologia/métodos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/imunologia , Dessecação , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Metacrilatos/administração & dosagem , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Células T Matadoras Naturais/imunologia
4.
J Biomater Sci Polym Ed ; 28(16): 1918-1934, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28737465

RESUMO

The growing area of tissue engineering has the potential to alleviate the shortage of tissues and organs for transplantation, and electrospun biomaterial scaffolds are extremely promising devices for translating engineered tissues into a clinical setting. However, to be utilized in this capacity, these medical devices need to be sterile. Traditional methods of sterilization are not always suitable for biomaterials, especially as many commonly used biomedical polymers are sensitive to chemical-, thermal- or radiation-induced damage. Therefore, the objective of this study was to evaluate the suitability of ozone gas for sterilizing electrospun scaffolds of polycaprolactone (PCL), a polymer widely utilized in tissue engineering and regenerative medicine applications, by evaluating if scaffolds composed of either nanofibres or microfibres were differently affected by the sterilization method. The sterility, morphology, mechanical properties, physicochemical properties, and response of cells to nanofibrous and microfibrous PCL scaffolds were assessed after ozone gas sterilization. The sterilization process successfully sterilized the scaffolds and preserved most of their initial attributes, except for mechanical properties. However, although the scaffolds became weaker after sterilization, they were still robust enough to use as tissue engineering scaffolds and this treatment increased the proliferation of L929 fibroblasts while maintaining cell viability, suggesting that ozone gas treatment may be a suitable technique for the sterilization of polymer scaffolds which are significantly damaged by other methods.


Assuntos
Eletricidade , Ozônio/química , Poliésteres/química , Poliésteres/farmacologia , Alicerces Teciduais/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Camundongos , Peso Molecular , Nanofibras/química , Propriedades de Superfície , Temperatura , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...