Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535215

RESUMO

Lactic acid (LA) production has seen significant progress over the past ten years. LA has seen increased economic importance due to its broadening use in different sectors such as the food, medicine, polymer, cosmetic, and pharmaceutical industries. LA production bioprocesses using microorganisms are economically viable compared to chemical synthesis and can benefit from metabolic engineering for improved productivity, purity, and yield. Strategies to optimize LA productivity in microorganisms on the strain improvement end include modifying metabolic routes, adding gene coding for lactate transporters, inducing tolerance to organic acids, and choosing cheaper carbon sources as fuel. Many of the recent advances in this regard have involved the metabolic engineering of yeasts and filamentous fungi to produce LA due to their versatility in fuel choice and tolerance of industrial-scale culture conditions such as pH and temperature. This review aims to compile and discuss metabolic engineering innovations in LA production in yeasts and filamentous fungi over the 2013-2023 period, and present future directions of research in this area, thus bringing researchers in the field up to date with recent advances.

2.
Pharmacol Ther ; 252: 108559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952905

RESUMO

During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.


Assuntos
Proteínas do Capsídeo , Neoplasias , Humanos , Proteínas do Capsídeo/genética , RNA Mensageiro , Peptídeos/química , Mutação , Neoplasias/genética
3.
J Exp Bot ; 69(21): 4997-5011, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30099553

RESUMO

Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Imunidade Vegetal/genética , Antibiose/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA