Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Pharm Des ; 27(10): 1311-1322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33121399

RESUMO

Bacterial resistance is considered one of the most important public health problems of the century, due to the ability of bacteria to rapidly develop resistance mechanisms, which makes it difficult to treat infections, leading to a high rate of morbidity and mortality. Based on this, several options are being sought as an alternative to currently available treatments, with a particular focus on nanotechnology. Nanomaterials have important potential for use in medical interventions aimed at preventing, diagnosing and treating numerous diseases by directing the delivery of drugs. This review presents data on the use of polymeric nanoparticles having in vitro and in vivo activity against bacteria belonging to the Enterobacteriaceae family.


Assuntos
Anti-Infecciosos , Nanopartículas , Antibacterianos/farmacologia , Enterobacteriaceae , Humanos , Nanotecnologia , Polímeros
2.
Pharmaceutics ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718016

RESUMO

Bacterial resistance has become an important public health problem. Bacteria have been acquiring mechanisms to resist the action of antimicrobial active pharmaceutical ingredients (API). Based on this, a promising alternative is the use of nanotechnology, since when the systems are presented in nanometric size, there is an increase in the interaction and concentration of the action at the target site improving the activity. Thus, this study aims to develop a polymeric nanoparticle (PN) composed of chitosan and hydroxypropylmethylcellulose, as an innovative strategy for the administration of an association between ceftriaxone and extract of S. brasiliensis, for the treatment of Enterobacteriaceae. From a Box-Behnken design, nanoparticles were obtained and evaluated using the DLS technique, obtaining the particle size between 440 and 1660 nm, IPD from 0.42 to 0.92, and positive charges. Morphological characteristics of PN by SEM revealed spherical morphology and sizes similar to DLS. Infrared spectroscopy showed no chemical interaction between the components of the formulation. The broth microdilution technique evaluated their antimicrobial activity, and a considerable improvement in the activity of the extract and the API compared to the free compounds was found, reaching an improvement of 133 times in the minimum inhibitory activity CRO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...