Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833335

RESUMO

Dynamic mechanical analysis (DMA) is one of the most common methods employed to study a material's viscoelastic properties. The effect of thermal aging on plain epoxy and a fique fabric-reinforced epoxy composite was investigated by comparing the mass loss, morphologies, and DMA properties of aged and unaged samples. In fact, thermal aging presents a big challenge for the high-temperature applications of natural fiber composites. In this work, both plain epoxy and fique fabric-reinforced epoxy composite were found to have different molecular mobility. This leads to distinct transition regions, with different changes in intensity caused by external loadings from time-aging. Three exponentially modified Gauss distribution functions (EMGs) were applied to loss factor curves of fique fabric-reinforced epoxy composite and plain epoxy, which allowed identifying three possible mobility ranges. From these results it was proposed that the thermal degradation behavior of natural fibers, especially fique fiber and their composites, might be assessed, based on their structural characteristics and mechanical properties.

2.
Polymers (Basel) ; 13(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200455

RESUMO

The coating of natural fiber by graphene oxide (GO) has, over, this past decade, attracted increasing attention as an effective way to improve the adhesion to polymer matrices and enhance the composite properties. In particular, the GO-functionalized 30 vol% curaua fiber (Ananas Erectifolius) reinforcing epoxy composite was found to display superior tensile and thermogravimetric properties as well as higher fiber/matrix interfacial shear strength. In this brief report, dynamic mechanical analysis (DMA) was conducted in up to 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix (EM) composites. The objective was not only to extend the amount incorporated but also for the first time investigate the composite viscoelastic behavior. The GO functionalization of curaua fibers (GOCF) improved the DMA storage (E') and loss (E″) modulus compared to the non-functionalized fiber composites. Values at 30 °C of both E' (13.44 GPa) and E″ (0.67 GPa) for 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix composites (50GOCF/EM) were substantially higher than those of 20 GOCF/EM with E' (7.08 GPa) and E″ (0.22 GPa) as well as non-functionalized 50CF/EM with E' (11.04 GPa) and E″ (0.45 GPa). All these results are above the neat epoxy previously reported values of E' (3.86 GPa) and E″ (0.09 GPa). As for the tangent delta, the parameters associated with damping factor and glass transition temperature were not found to be significantly changed by GO functionalization, but decreased with respect to the neat epoxy due to chain mobility restriction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...