RESUMO
BACKGROUND: The treatment of latent tuberculosis infection (LTBI) in individuals at risk of reactivation is essential for tuberculosis control. However, blood biomarkers associated with LTBI treatment have not been identified. METHODS: Blood samples from tuberculin skin test (TST) reactive individuals were collected before and after one and six months of isoniazid (INH) therapy. Peripheral mononuclear cells (PBMC) were isolated, and an in-house interferon-γ release assay (IGRA) was performed. Expression of chemokine ligand 4 (CCL4), chemokine ligand 10 (CXCL10), chemokine ligand 11 (CXCL11), interferon alpha (IFNA), radical S-adenosyl methionine domain-containing 2 (RSAD2), ubiquitin-specific peptidase 18 (USP18), interferon-induced protein 44 (IFI44), interferon-induced protein 44 like (IFI44L), interferon-induced protein tetratricopeptide repeats 1(IFIT1), and interleukin 2 receptor subunit alpha (IL2RA) mRNA levels were assessed by qPCR before, during, and after INH treatment. RESULTS: We observed significantly lower relative abundances of USP18, IFI44L, IFNA, and IL2RA transcripts in PBMC from IGRA-positive individuals compared to levels in IGRA-negative individuals before INH therapy. Also, relative abundance of CXCL11 was significantly lower in IGRA-positive than in IGRA-negative individuals before and after one month of INH therapy. However, the relative abundance of CCL4, CXCL10, and CXCL11 mRNA was significantly decreased and that of IL2RA and USP18 significantly increased after INH therapy, regardless of the IGRA result. Our results show that USP18, IFI44L, IFIT1, and IL2RA relative abundances increased significantly, meanwhile the relative abundance of CCL4, CXCL11, and IFNA decreased significantly after six months of INH therapy in TST-positive individuals. CONCLUSIONS: Changes in the profiles of USP18, IL2RA, IFNA, CCL4, and CXCL11 expressions during INH treatment in TST-positive individuals, regardless of IGRA status, are potential tools for monitoring latent tuberculosis treatment.
Assuntos
Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2/genética , Tuberculose Latente/genética , Tuberculose Latente/microbiologia , Ubiquitina Tiolesterase/genética , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Biomarcadores , Feminino , Humanos , Testes de Liberação de Interferon-gama , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Teste Tuberculínico , Ubiquitina Tiolesterase/metabolismo , Adulto JovemRESUMO
Macrophages (Mφ) and dendritic cells are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. Leishmania promastigotes have been shown to protect Mφ, neutrophils, and dendritic cells from both natural and induced apoptosis. Nevertheless, the effect of the infection with Leishmania amastigotes in the apoptosis of these cell populations has not been established, which results are very important since amastigotes persist in cells for many days and are responsible for sustaining infection in the host. As shown in this study, apoptosis of monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by infection with L. mexicana amastigotes from 42.48 to 36.92% as detected by Annexin-V binding to phosphatidylserine. Also, the infection of moDC with L. mexicana amastigotes diminished the fragmentation of DNA as detected by terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling assay, and changes in cell morphology were analyzed by electron microscopy. The observed antiapoptotic effect was found to be associated with an 80% reduction in the presence of active caspase-3 in infected moDC. The capacity of L. mexicana amastigotes to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.