Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0211132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682094

RESUMO

Staphylococcus epidermidis is a bacterium frequently isolated from contaminated platelet concentrates (PCs), a blood product used to treat bleeding disorders in transfusion patients. PCs offer an accidental niche for colonization of S. epidermidis by forming biofilms and thus avoiding clearance by immune factors present in this milieu. Using biochemical and microscopy techniques, we investigated the structural changes of the peptidoglycan (PG) and the biofilm matrix of S. epidermidis biofilms formed in whole-blood derived PCs compared to biofilms grown in glucose-supplemented trypticase soy broth (TSBg). Both, the PG and the biofilm matrix are primary mechanisms of defense against environmental stress. Here we show that in PCs, the S. epidermidis biofilm matrix is mainly of a proteinaceous nature with extracellular DNA, in contrast to the predominant polysaccharide nature of the biofilm matrix formed in TSBg cultures. PG profile studies demonstrated that the PG of biofilm cells remodels during PC storage displaying fewer muropeptides variants than those observed in TSBg. The PG muropeptides contain two chemical modifications (amidation and O-acetylation) previously associated with resistance to antimicrobial agents by other staphylococci. Our study highlights two key structural features of S. epidermidis that are remodeled when exposed to human platelets and could be used as targets to reduce septic transfusions events.


Assuntos
Biofilmes/crescimento & desenvolvimento , Plaquetas/metabolismo , Peptidoglicano/metabolismo , Staphylococcus epidermidis/fisiologia , Plaquetas/microbiologia , Plaquetas/patologia , Humanos
2.
ISME J ; 12(2): 438-450, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29028003

RESUMO

Bacteria face tough competition in polymicrobial communities. To persist in a specific niche, many species produce toxic extracellular effectors to interfere with the growth of nearby microbes. These effectors include the recently reported non-canonical D-amino acids (NCDAAs). In Vibrio cholerae, the causative agent of cholera, NCDAAs control cell wall integrity in stationary phase. Here, an analysis of the composition of the extracellular medium of V. cholerae revealed the unprecedented presence of D-Arg. Compared with other D-amino acids, D-Arg displayed higher potency and broader toxicity in terms of the number of bacterial species affected. Tolerance to D-Arg was associated with mutations in the phosphate transport and chaperone systems, whereas D-Met lethality was suppressed by mutations in cell wall determinants. These observations suggest that NCDAAs target different cellular processes. Finally, even though virtually all Vibrio species are tolerant to D-Arg, only a few can produce this D-amino acid. Indeed, we demonstrate that D-Arg may function as part of a cooperative strategy in vibrio communities to protect non-producing members from competing bacteria. Because NCDAA production is widespread in bacteria, we anticipate that D-Arg is a relevant modulator of microbial subpopulations in diverse ecosystems.


Assuntos
Antibiose , Arginina/metabolismo , Vibrio cholerae/metabolismo , Bactérias/genética , Biodiversidade , Mutação , Vibrio/metabolismo
3.
Front Microbiol ; 8: 1264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740487

RESUMO

Bacterial morphology is extremely diverse. Specific shapes are the consequence of adaptive pressures optimizing bacterial fitness. Shape affects critical biological functions, including nutrient acquisition, motility, dispersion, stress resistance and interactions with other organisms. Although the characteristic shape of a bacterial species remains unchanged for vast numbers of generations, periodical variations occur throughout the cell (division) and life cycles, and these variations can be influenced by environmental conditions. Bacterial morphology is ultimately dictated by the net-like peptidoglycan (PG) sacculus. The species-specific shape of the PG sacculus at any time in the cell cycle is the product of multiple determinants. Some morphological determinants act as a cytoskeleton to guide biosynthetic complexes spatiotemporally, whereas others modify the PG sacculus after biosynthesis. Accumulating evidence supports critical roles of morphogenetic processes in bacteria-host interactions, including pathogenesis. Here, we review the molecular determinants underlying morphology, discuss the evidence linking bacterial morphology to niche adaptation and pathogenesis, and examine the potential of morphological determinants as antimicrobial targets.

4.
Methods Mol Biol ; 1440: 11-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311661

RESUMO

High-performance liquid chromatography (HPLC) analysis has been critical for determining the structural and chemical complexity of the cell wall. However this method is very time consuming in terms of sample preparation and chromatographic separation. Here we describe (1) optimized methods for peptidoglycan isolation from both Gram-negative and Gram-positive bacteria that dramatically reduce the sample preparation time, and (2) the application of the fast and highly efficient ultra-performance liquid chromatography (UPLC) technology to muropeptide separation and quantification. The advances in both analytical instrumentation and stationary-phase chemistry have allowed for evolved protocols which cut run time from hours (2-3 h) to minutes (10-20 min), and sample demands by at least one order of magnitude. Furthermore, development of methods based on organic solvents permits in-line mass spectrometry (MS) of the UPLC-resolved muropeptides. Application of these technologies to high-throughput analysis will expedite the better understanding of the cell wall biology.


Assuntos
Parede Celular/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Positivas/citologia , Peptidoglicano/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Parede Celular/química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/metabolismo , Peptidoglicano/química , Solventes , Fatores de Tempo
5.
J Am Chem Soc ; 138(29): 9193-204, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27337563

RESUMO

Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.


Assuntos
Parede Celular/metabolismo , Biologia Computacional , Drosophila melanogaster/imunologia , Imunidade Inata/efeitos dos fármacos , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Alphaproteobacteria/química , Alphaproteobacteria/citologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Endopeptidases/metabolismo
6.
Mol Microbiol ; 99(3): 546-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462856

RESUMO

Bacteria remodel peptidoglycan structure in response to environmental changes. Many enzymes are involved in peptidoglycan metabolism; however, little is known about their responsiveness in a defined environment or the modes they assist bacteria to adapt to new niches. Here, we focused in peptidoglycan enzymes that intracellular bacterial pathogens use inside eukaryotic cells. We identified a peptidoglycan enzyme induced by Salmonella enterica serovar Typhimurium in fibroblasts and epithelial cells. This enzyme, which shows γ-D-glutamyl-meso-diaminopimelic acid D,L-endopeptidase activity, is also produced by the pathogen in media with limited nutrients and in resting conditions. The enzyme, termed EcgA for endopeptidase responding to cessation of growth', is encoded in a S. Typhimurium genomic island absent in Escherichia coli. EcgA production is strictly dependent on the virulence regulator PhoP in extra- and intracellular environments. Consistent to this regulation, a mutant lacking EcgA is attenuated in the mouse typhoid model. These findings suggest that specialised peptidoglycan enzymes, such as EcgA, might facilitate Salmonella adaptation to the intracellular lifestyle. Moreover, they indicate that readjustment of peptidoglycan metabolism inside the eukaryotic cell is essential for host colonisation.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/genética , Endopeptidases/genética , Feminino , Fibroblastos/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Virulência
7.
J Biol Chem ; 290(52): 31090-100, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26468288

RESUMO

The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.


Assuntos
Escherichia coli , Peptidoglicano/química , Peptidoglicano/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura
8.
Front Microbiol ; 6: 449, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005443

RESUMO

The peptidoglycan wall (PG) is a unique structure which confers physical strength and defined shape to bacteria. It consists of a net-like macromolecule of peptide interlinked glycan chains overlying the cell membrane. The structure and layout of the PG dictates that the wall has to be continuously modified as bacteria go through division, morphological differentiation, and adaptive responses. The PG is poorly known in structural terms. However, to understand morphogenesis a precise knowledge of glycan strand arrangement and of local effects of the different kinds of subunits is essential. The scarcity of data led to a conception of the PG as a regular, highly ordered structure which strongly influenced growth models. Here, we review the structure of the PG to define a more realistic conceptual framework. We discuss the consequences of the plasticity of murein architecture in morphogenesis and try to define a set of minimal structural constraints that must be fulfilled by any model to be compatible with present day information.

9.
Environ Microbiol ; 17(4): 1081-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24762004

RESUMO

Changes in the peptidoglycan (PG) structure of Salmonella enterica are detected in the presence of a sublethal concentration of sodium deoxycholate (DOC): (i) lower proportions of Braun lipoprotein (Lpp)-bound muropeptides; (ii) reduced levels of muropeptides cross-linked by L(meso)-diaminopimelyl-D(meso)-diaminopimelic acid (L-D) peptide bridges (3-3 cross-links). Similar structural changes are found in S. enterica cultures adapted to grow in the presence of a lethal concentration of DOC, suggesting that reduced anchoring of Braun protein to PG and low occurrence of 3-3 cross-links may increase S. enterica resistance to bile. This view is further supported by additional observations: (i) A triple mutant lacking L,D-transpeptidases YbiS, ErfK, and YcfS, which does not contain Lpp anchored to PG, is hyper-resistant to bile; (ii) enhanced 3-3 cross-linking upon overexpression of YnhG transpeptidase causes a decrease in bile resistance. These observations suggest that remodelling of the cell wall may be added to the list of adaptive responses that permit survival of S. enterica in the presence of bile.


Assuntos
Bile/microbiologia , Parede Celular/metabolismo , Ácido Desoxicólico/farmacologia , Peptidoglicano/metabolismo , Salmonella enterica/crescimento & desenvolvimento , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/química , Lipoproteínas/metabolismo , Peptídeos/análise , Peptidoglicano/biossíntese , Peptidil Transferases/genética
10.
Microb Drug Resist ; 20(3): 190-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24799190

RESUMO

The peptidoglycan (PG) cell wall constitutes the main defense barrier of bacteria against environmental insults and acts as communication interface. The biochemistry of this macromolecule has been well characterized throughout the years but recent discoveries have unveiled its chemical plasticity under environmental stresses. Non-canonical D-amino acids (NCDAA) are produced and released to the extracellular media by diverse bacteria. Such molecules govern cell wall adaptation to challenging environments through their incorporation into the polymer, a widespread capability among bacteria that reveals the inherent catalytic plasticity of the enzymes involved in the cell wall metabolism. Here, we analyze the recent structural and biochemical characterization of Bsr, a new family of broad spectrum racemases able to generate a wide range of NCDAA. We also discuss the necessity of a coordinated action of PG multispecific enzymes to generate adequate levels of modification in the murein sacculus. Finally, we also highlight how this catalytic plasticity of NCDAA-incorporating enzymes has allowed the development of new revolutionary methodologies for the study of PG modes of growth and in vivo dynamics.


Assuntos
Isomerases de Aminoácido/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Peptidoglicano/química , Vibrio cholerae/enzimologia , Adaptação Fisiológica , Isomerases de Aminoácido/química , Aminoácidos/química , Proteínas de Bactérias/química , Domínio Catalítico , Parede Celular/química , Redes e Vias Metabólicas , Modelos Moleculares , Peptidoglicano/metabolismo , Estresse Fisiológico , Vibrio cholerae/química
11.
Curr Opin Microbiol ; 18: 46-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607990

RESUMO

The peptidoglycan (PG) sacculus once thought to be just a reinforcing, static and uniform structure, is fast becoming recognized as a dynamic cell constituent involved in every aspect of bacterial physiology. Recent advances showed that in addition to 'classical' tasks-as an essential element to define bacterial shape, size, division and resistance to osmotic stress-the sacculus plays very important roles in many other fields. The very few chemical and structural changes that were once considered as bizarre, or maybe exotic exceptions, are now universally accepted as fundamental pieces in bacterial cell wall adaptation to different kinds of environmental stresses; immune response; intra-specific and inter-specific signalling and antibiotics, just to mention a few. Most, if not all, of these implications are a consequence of the enormous adaptability of PG metabolism to cope with changing conditions, a characteristic for which the term plasticity is proposed. Here we overview and comment on a number of recent contributions on the cell wall adaptive responses to environmental challenges that has greatly impacted the already high complexity of the PG biology field. These new evidences have revived the interest in PG plasticity as an exciting and trendy topic in current microbiology which considers this variability as the trustworthy picture of bacterial PG in nature.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Estresse Fisiológico
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 79-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419381

RESUMO

Broad-spectrum amino-acid racemases (Bsrs) enable bacteria to generate noncanonical D-amino acids, the roles of which in microbial physiology, including the modulation of cell-wall structure and the dissolution of biofilms, are just beginning to be appreciated. Here, extensive crystallographic, mutational, biochemical and bioinformatic studies were used to define the molecular features of the racemase BsrV that enable this enzyme to accommodate more diverse substrates than the related PLP-dependent alanine racemases. Conserved residues were identified that distinguish BsrV and a newly defined family of broad-spectrum racemases from alanine racemases, and these residues were found to be key mediators of the multispecificity of BrsV. Finally, the structural analysis of an additional Bsr that was identified in the bioinformatic analysis confirmed that the distinguishing features of BrsV are conserved among Bsr family members.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Vibrio cholerae/enzimologia , Alanina Racemase/química , Alanina Racemase/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Especificidade por Substrato , Vibrio cholerae/química
13.
J Vis Exp ; (83): e51183, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24457605

RESUMO

The bacterial cell wall is critical for the determination of cell shape during growth and division, and maintains the mechanical integrity of cells in the face of turgor pressures several atmospheres in magnitude. Across the diverse shapes and sizes of the bacterial kingdom, the cell wall is composed of peptidoglycan, a macromolecular network of sugar strands crosslinked by short peptides. Peptidoglycan's central importance to bacterial physiology underlies its use as an antibiotic target and has motivated genetic, structural, and cell biological studies of how it is robustly assembled during growth and division. Nonetheless, extensive investigations are still required to fully characterize the key enzymatic activities in peptidoglycan synthesis and the chemical composition of bacterial cell walls. High Performance Liquid Chromatography (HPLC) is a powerful analytical method for quantifying differences in the chemical composition of the walls of bacteria grown under a variety of environmental and genetic conditions, but its throughput is often limited. Here, we present a straightforward procedure for the isolation and preparation of bacterial cell walls for biological analyses of peptidoglycan via HPLC and Ultra Performance Liquid Chromatography (UPLC), an extension of HPLC that utilizes pumps to deliver ultra-high pressures of up to 15,000 psi, compared with 6,000 psi for HPLC. In combination with the preparation of bacterial cell walls presented here, the low-volume sample injectors, detectors with high sampling rates, smaller sample volumes, and shorter run times of UPLC will enable high resolution and throughput for novel discoveries of peptidoglycan composition and fundamental bacterial cell biology in most biological laboratories with access to an ultracentrifuge and UPLC.


Assuntos
Bactérias/química , Técnicas Bacteriológicas/métodos , Parede Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Bactérias/ultraestrutura
14.
Curr Opin Microbiol ; 16(6): 731-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24094807

RESUMO

A bacterial cell takes on the challenge to preserve and reproduce its shape at every generation against a substantial internal pressure by surrounding itself with a mechanical support, a peptidoglycan cell wall. The enlargement of the cell wall via net incorporation of precursors into the pre-existing wall conditions bacterial growth and morphology. However, generation, reproduction and/or modification of a specific shape requires that the incorporation takes place at precise locations for a defined time period. Much has been learnt in the past few years about the biochemistry of the peptidoglycan synthesis process, but topological approaches to the understanding of shape generation have been hindered by a lack of appropriate techniques. Recent technological advances are paving the way for substantial progress in understanding the mechanisms of bacterial morphogenesis. Here we review the latest developments, focusing on the impact of new techniques on the precise mapping of cell wall growth sites.


Assuntos
Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Microbiologia/tendências
15.
J Bacteriol ; 195(19): 4415-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893115

RESUMO

Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Ligação às Penicilinas/metabolismo , Estresse Fisiológico/fisiologia , Parede Celular , Escherichia coli/genética , Flagelos/genética , Flagelos/fisiologia , Teste de Complementação Genética , Movimento , Mutação , Proteínas de Ligação às Penicilinas/genética
16.
Mol Microbiol ; 89(1): 1-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23679048

RESUMO

The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques.


Assuntos
Bactérias/química , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Peptidoglicano/análise
17.
Angew Chem Int Ed Engl ; 51(50): 12519-23, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23055266

RESUMO

Tracking a bug's life: Peptidoglycan (PG) of diverse bacteria is labeled by exploiting the tolerance of cells for incorporating different non-natural D-amino acids. These nontoxic D-amino acids preferably label the sites of active PG synthesis, thereby enabling fine spatiotemporal tracking of cell-wall dynamics in phylogenetically and morphologically diverse bacteria. HCC = 7-hydroxycoumarin, NBD = 7-nitrobenzofurazan, TAMRA = carboxytetramethylrhodamine.


Assuntos
Aminoácidos/química , Bactérias/metabolismo , Corantes Fluorescentes/química , Peptidoglicano/biossíntese , Agrobacterium tumefaciens/metabolismo , Bacillus subtilis/metabolismo , Benzoxazóis/química , Técnicas Biossensoriais , Parede Celular/química , Parede Celular/metabolismo , Cumarínicos/química , Escherichia coli/metabolismo , Microscopia , Peptidoglicano/química
18.
Extremophiles ; 16(3): 485-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22527042

RESUMO

Regular surface protein layers (S-layers) from most Gram-positive bacteria and from the ancestral bacterium Thermus thermophilus attach to pyruvylated polysaccharides (SCWP) covalently bound to the peptidoglycan through their SLH domain. However, it is not known whether the synthesis of SCWP and S-layer is coordinated enough as to follow a similar pattern of incorporation to the cell wall during growth. In this work we analyse the localization of newly synthesized SCWP on the cell wall of T. thermophilus by immunoelectron microscopy. For this, we obtained mutants with a reduced amount of pyruvylated SCWP through mutation of the csaB gene encoding the SCWP-pyruvylating activity, and its upstream gene csaA, a putative sugar transporter. We hypothesized that CsaA would be required for the synthesis of the SCWP. However, we found that csaA mutants showed only a minor decrease in the amount of SCWP immunodetected on the cell walls in comparison with csaB mutants, revealing its irrelevance in the process. Complementation experiments of csaB mutants with CsaB expressed from inducible promoters revealed that newly synthesized SCWP was homogeneously distributed along the cell wall. Fusions with thermostable fluorescent protein revealed that CsaB was distributed also in homogeneous pattern associated with the membrane. These data support that synthesis of SCWP takes place in disperse and homogeneous form all over the cell surface, in contrast to the zonal incorporation at the cell centre recently demonstrated for SlpA.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Polissacarídeos Bacterianos/biossíntese , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Parede Celular/genética , Glicoproteínas de Membrana/genética , Mutação , Peptidoglicano/genética , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/genética , Thermus thermophilus/genética
19.
Mol Microbiol ; 84(2): 203-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22390731

RESUMO

Escherichia coli cells lacking low-molecular-weight penicillin-binding proteins (LMW PBPs) exhibit morphological alterations that also appear when the septal protein FtsZ is mislocalized, suggesting that peptidoglycan modification and division may work together to produce cell shape. We found that in strains lacking PBP5 and other LMW PBPs, higher FtsZ concentrations increased the frequency of branched cells and incorrectly oriented Z rings by 10- to 15-fold. Invagination of these rings produced improperly oriented septa, which in turn gave rise to asymmetric cell poles that eventually elongated into branches. Branches always originated from the remnants of abnormal septation events, cementing the relationship between aberrant cell division and branch formation. In the absence of PBP5, PBP6 and DacD localized to nascent septa, suggesting that these PBPs can partially substitute for the loss of PBP5. We propose that branching begins when mislocalized FtsZ triggers the insertion of inert peptidoglycan at unusual positions during cell division. Only later, after normal cell wall elongation separates the patches, do branches become visible. Thus, a relationship between the LMW PBPs and cytoplasmic FtsZ ultimately affects cell division and overall shape.


Assuntos
Divisão Celular Assimétrica , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Ligação às Penicilinas/metabolismo , Escherichia coli/fisiologia , Modelos Biológicos
20.
Microb Drug Resist ; 18(3): 306-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22443287

RESUMO

It has been generally assumed that the role of D-amino acids in bacterial physiology is rather limited. However, recent new evidence demonstrated that millimolar concentrations of noncanonical D-amino acids are synthesized and released to the environment by bacteria from diverse phyla. These D-amino acids help bacteria adapt to environmental challenges by modulating the structure and composition of the peptidoglycan (PG). This regulation, which appears to be well conserved among bacterial species, occurs principally through the incorporation of the D-amino acids into the terminus of the peptide moiety of muropeptides. These findings revived interest in studies investigating D-amino acids as an exciting and trendy topic in current microbiology, which considers them as fundamental players in different aspects of bacterial physiology. In this article, we provide an overview of the origins of research on the effects of D-amino acids in the biology of bacterial cell walls, including their recent implication as key factors for stress-associated PG remodeling.


Assuntos
Aminoácidos/biossíntese , Bactérias/metabolismo , Peptidoglicano/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Estereoisomerismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...