Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568307

RESUMO

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Assuntos
Óxido Ferroso-Férrico , Praguicidas , Poluentes Químicos da Água , Catálise , Poluentes Químicos da Água/química , Óxido Ferroso-Férrico/química , Peróxido de Hidrogênio/química , Oxirredução , Azóis/química
2.
Environ Sci Pollut Res Int ; 30(8): 21598-21607, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36271068

RESUMO

Cylindrospermopsin (CYN) is a potent cyanobacterial toxin found in freshwaters worldwide. In this work, the feasibility of the photo-Fenton process under neutral pH using light emitting diodes as irradiation source for the removal of this hazardous cyanotoxin from freshwater was investigated. The impact of the kind of iron chelating agent (ethylenediamine-N, N'-disuccinic acid vs. ethylenedinitrilotetraacetic acid) as well as the effect of the main operating conditions viz. H2O2 dose, Fe(III) load, initial CYN concentration, and Fe(III):EDDS molar ratio on the performance of the process was systematically evaluated. EDDS was selected as the most appropriate iron chelating agent considering the kinetics of the process and the environmental impact (Vibrio fischeri and Artemia salina). Under optimized conditions ([H2O2] = 30 mg L-1; [Fe(III)] = 5 mg L-1; Fe(III):ligand = 1:0.5 (molar ratio)), complete removal of CYN was achieved in 15-min reaction time. Furthermore, the catalytic system showed to be effective in real water matrices (river and reservoir waters) spiked with CYN. Although the presence of inorganic ions (mainly HCO3-/CO32-) and dissolved organic carbon decreased the oxidation rate of CYN due to scavenging reactions and iron coordination, respectively, complete elimination of the cyanotoxin was achieved in all cases. The fate of EDDS along the process was also evaluated to demonstrate that the catalytic system investigated, apart from its effectiveness, warrants the complete absence of residues after reaction. Therefore, the proposed system constitutes a promising method for cyanotoxin treatment either as a drinking water treatment step in conventional plants or as a potential remediation strategy in the natural environment.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Compostos Férricos , Ferro/química , Toxinas de Cianobactérias , Quelantes de Ferro , Oxirredução , Concentração de Íons de Hidrogênio
3.
Chemosphere ; 309(Pt 2): 136809, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228721

RESUMO

This work aims at evaluating the fate of microplastics (MPs) along Fenton oxidation. For such goal, realistic MPs (150-250 µm) of five representative polymer types (PET, PE, PVC, PP and EPS) were obtained from commercial plastic products by cryogenic milling. Experiments (7.5 h) were performed under relatively severe operating conditions: T = 80 °C; pH0 = 3; [H2O2]0 = 1000 mgL-1 (15 doses, 1 every 0.5 h); [Fe3+]0 = 10 mgL-1 (5 doses, 1 every 1.5 h). Slight MPs weight losses (∼10%) were achieved after Fenton oxidation regardless the MP nature. Nevertheless, oxidation yield clearly increased with decreasing the particle size given their higher exposed surface area (up to 20% weight loss with 20-50 µm EPS MPs). Clearly, MPs suffered important changes in their surface due to the introduction of oxygenated groups, which made them more acidic and hydrophilic. Furthermore, MPs progressively reduced their size. In fact, they can be completely oxidized to CO2, as demonstrated in the oxidation of PS nanoplastics (140 nm), where 70% mineralization was achieved. The nature of the plastic particles had a relevant impact on its overall oxidation, being more prone to be oxidized those polymers which contain aromatic rings in their structures (EPS and PET) compared to those formed by alkane chains (PE, PP and PVC). In the latter, the presence of substituents also reduced their oxidation potential. Remarkably, possible leachates released along reaction were more quickly oxidized than the MPs/NPs, so it can be assumed that these dissolved compounds would be completely removed once the solid particles are eliminated. Notably, the leachates obtained upon MPs oxidation were more biodegradable than the released from the fresh solids. All this knowledge is crucial for the understanding of MPs oxidation by the Fenton process and opens the door for the design and optimization of this technology either for water treatment or for analytical purposes (MPs isolation).


Assuntos
Microplásticos , Plásticos , Peróxido de Hidrogênio/química , Dióxido de Carbono , Cloreto de Polivinila , Alcanos
4.
Chemosphere ; 283: 131085, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146885

RESUMO

This work aims at evaluating the role of nature, size, age, and natural organic matter (NOM) fouling of realistic microplastics (MPs) on the adsorption of two persistent micropollutants (diclofenac (DCF) and metronidazole (MNZ)). For such goal, four representative polymer types (polystyrene (PS), polyethylene terephthalate (PET), polypropylene (PP) and high-density polyethylene (HDPE)) were tested. MPs were obtained by cryogenic milling of different commercial materials (disposable bottles, containers, and trays), and fully characterized (optical microscopic and SEM images, FTIR, elemental analysis, water contact angle and pHslurry). The micropollutants hydrophobicity determined to a high extent their removal yield from water. Regardless of the MP's nature, the adsorption capacity for DCF was considerably higher than the achieved for MNZ, which can be related to its stronger hydrophobic properties and aromatic character. In fact, aromatic MPs (PS and PET) showed the highest adsorption capacity values with DCF (~100 µg g-1). The MP size also played a key role on its adsorption capacity, which was found to increase with decreasing the particle size (20-1000 µm). MPs aging (simulated by Fenton oxidation) led also to substantial changes on their sorption behavior. Oxidized MPs exhibited acidic surface properties which led to a strong decrease on the adsorption of the hydrophobic micropollutant (DCF) but to an increase with the hydrophilic one (MNZ). NOM fouling (WWTP effluent, river water, humic acid solution) led to a dramatic decrease on the MPs sorption capacity due to sorption sites blocking. Finally, the increase of pH or salinity of the aqueous medium increased the micropollutants desorption.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Plásticos , Poliestirenos , Poluentes Químicos da Água/análise
5.
J Environ Manage ; 290: 112624, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901828

RESUMO

The feasibility of catalytic wet air oxidation, intensified homogeneous Fenton and heterogeneous Photo-Fenton systems for the treatment of real hospital wastewater has been investigated. Wastewater samples were collected from a hospital sewer, during a weekly monitoring program, and fully characterized. Up to seventy-nine pharmaceuticals, including mostly parent compounds and some of their transformation products, were analyzed. Catalytic wet air oxidation allowed the complete removal of several pharmaceutical groups, but it did not allow to eliminate analgesics/anti-inflammatories and antibiotics, whose average removal was around 85%. Intensified Fenton oxidation was the most efficient process for all the drugs removal with an almost complete reduction of the initial pharmaceutical load (99.8%). The heterogeneous Photo-Fenton system reached a 94.5% reduction of the initial pharmaceutical load. The environmental risk of the treated samples by the hazard quotient (HQ) method was also evaluated. Fenton oxidation was the most effective system with a final ∑HQ of 5.4. Catalytic wet air oxidation and Photo-Fenton systems achieved total ∑HQ values of 895 and 88, respectively. This fact was related to the presence of refractory antibiotics in the treated catalytic wet air oxidation samples. On the opposite, the Photo-Fenton system provided the elimination of most pharmaceutical pollutants that pose a high environmental risk such as antibiotics. Simplified cost estimation was finally performed as a preliminary approach of the economy of the three oxidation processes for the hospital wastewater treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Hospitais , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 761: 143197, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33160675

RESUMO

The increasing occurrence of cyanobacterial blooms worldwide represents an important threat for both the environment and public health. In this context, the development of risk analysis and management tools as well as sustainable and cost-effective treatment processes is essential. The research project TALGENTOX, funded by the Ibero-American Science and Technology Program for Development (CYTED-2019), aims to address this ambitious challenge in countries with different environmental and social conditions within the Ibero-American context. It is based on a multidisciplinary approach that combines ecology, water management and technology fields, and includes research groups from Chile, Colombia, Mexico, Peru and Spain. In this review, the occurrence of toxic cyanobacteria and cyanotoxins in freshwaters from these countries are summarized. The presence of cyanotoxins has been confirmed in all countries but the information is still scarce and further monitoring is required. In this regard, remote sensing or metagenomics are good alternatives at reasonable cost. The risk management of freshwaters from those countries considering the most frequent uses (consumption and recreation) has been also evaluated. Only Spain and Peru include cyanotoxins in its drinking water legislation (only MC-LR) and thus, there is a need for regulatory improvements. The development of preventive strategies like diminishing nutrient loads to aquatic systems is also required. In the same line, corrective measures are urgently needed especially in drinking waters. Advanced Oxidation Processes (AOPs) have the potential to play a major role in this scenario as they are effective for the elimination of most cyanotoxins classes. The research on the field of AOPs is herein summarized considering the cost-effectiveness, environmental character and technical applicability of such technologies. Fenton-based processes and photocatalysis using solar irradiation or LED light represent very promising alternatives given their high cost-efficiency. Further research should focus on developing stable long-term operation systems, addressing their scale-up.


Assuntos
Cianobactérias , Água Doce , Chile , Colômbia , Água Doce/análise , México , Microcistinas , Peru , Gestão de Riscos , Espanha , Tecnologia , Estados Unidos
7.
Environ Sci Pollut Res Int ; 27(2): 1176-1185, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29860695

RESUMO

This work explores the modification of naturally occurring magnetite by controlled oxidation (200-400 °C, air atmosphere) and reduction (300-600 °C, H2 atmosphere) treatments with the aim of boosting its activity in CWPO. The resulting materials were fully characterized by XRD, XPS, TGA, TPR, SEM, and magnetization measurements, allowing to confirm the development of core-shell type structures. The magnetite core of the solid remained unchanged upon the treatment whereas the Fe(II)/Fe(III) ratio of the shell was modified (e.g. 0.42, 0.11 and 0.63 values were calculated for pristine Fe3O4, Fe3O4-O400, and Fe3O4-R400, respectively). The performance of the catalysts was tested in the CWPO of sulfamethoxazole (SMX) (5 mg L-1) under ambient conditions and circumneutral pH (pH0 = 5), using the stoichiometric dose of H2O2 (25 mg L-1) and a catalyst load of 1 g L-1. The key role of the ferrous species on the mineral shell was evidenced. Whereas the oxidation of magnetite led to significantly slower degradation rates of the pollutant, its reduction gave rise to a dramatic increase, achieving the complete removal of SMX in 1.5 h reaction time with the optimum catalyst (Fe3O4-R400) compared to the 3.5 h required with the pristine mineral. A reaction mechanism was proposed for SMX degradation, and a kinetic equation based on the Eley-Rideal model was accordingly developed. This model successfully fitted the experimental results. The stability of Fe3O4-R400 was evaluated upon five sequential runs. Finally, the versatility of the catalytic system was proved in real environmentally relevant water matrices.


Assuntos
Compostos Férricos/química , Óxido Ferroso-Férrico , Peróxido de Hidrogênio , Catálise , Oxirredução , Peróxidos
8.
Water Res ; 163: 114853, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310856

RESUMO

The occurrence of harmful cyanobacterial blooms has unabated increased over the last few decades, posing a significant risk for public health. In this work, we investigate the feasibility of catalytic wet peroxide oxidation (CWPO) promoted by modified natural magnetite (Fe3O4-R400/H2O2), as an inexpensive, simple-operation and environmentally-friendly process for the removal of the cyanotoxins that show the major impact on drinking water: microcystins (MC-LR and MC-RR), cylindrospermopsin (CYN), anatoxin-a (ATX) and saxitoxin (STX). The performance of the system was evaluated under ambient conditions and circumneutral pH (pH0 = 5) using relevant cyanotoxin concentrations (100-500 µg L-1). The nature of the cyanotoxins determined their reactivity towards CWPO, which decreased in the following order: MC-RR > CYN > MC-LR ≫ ATX > STX. In this sense, microcystins and CYN were completely removed in short reaction times (1-1.5 h) with a low catalyst concentration (0.2 g L-1) and the stoichiometric amount of H2O2 (2-2.6 mg L-1), while only 60-80% conversion was achieved with ATX and STX in 5 h. In these cases, an intensification of the operating conditions (1 g L-1 catalyst and up to 30 mg H2O2 L-1) was required to remove both toxins in 1 h. The impact of the main components of freshwaters i.e. natural organic matter (NOM) and several inorganic ions (HCO3-, HPO42-, SO42-) on the performance of the process was also investigated. Although the former led to a partial inhibition of the reaction due to HO· scavenging and catalyst coating, the latter did not show any remarkably effect, and the versatility of the process was finally confirmed in a real surface water. To further demonstrate the effectiveness of the catalytic system, the toxicity of both the initial cyanotoxins and the resulting CWPO effluents was measured with the brine shrimp Artemia salina. Remarkably, all CWPO effluents were non-toxic at the end of the treatment.


Assuntos
Água Potável , Microcistinas , Alcaloides , Toxinas Bacterianas , Toxinas de Cianobactérias , Peróxido de Hidrogênio , Peróxidos , Saxitoxina , Tropanos , Uracila/análogos & derivados
9.
Chemosphere ; 213: 141-148, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30216814

RESUMO

Aqueous-phase catalytic hydrodechlorination (HDC) has been scarcely explored in the literature for the removal of chlorinated micropollutants. The aim of this work is to prove the feasibility of this technology for the fast and environmentally-friendly degradation of such kind of compounds. Diclofenac (DCF), a highly consumed anti-inflammatory drug, has been selected as the target pollutant given its toxicity and low biodegradability. The commercial Pd/Al2O3 (1% wt.) catalyst has been used due to its prominent role on this field. Complete degradation of DCF was achieved in a short reaction time (20 min) under ambient conditions (25 °C, 1 atm) at [DCF]0 = 68 µM; [Pd/Al2O3]0 = 0.5 g L-1 and H2 flow rate of 50 N mL min-1. Remarkably, the chlorinated intermediate (2-(2-chloroanilino)-phenylacetate (Cl-APA)) generated along reaction was completely removed at the same time, being the chlorine-free compound 2-anilinophenylacetate (APA) the only final product. A reaction scheme based on this consecutive pathway and a pseudo-first-order kinetic model have been proposed. An apparent activation energy of 43 kJ mol-1 was obtained, a comparable value to those previously reported for conventional organochlorinated pollutants. Remarkably, the catalyst exhibited a reasonable stability upon three successive uses, achieving the complete degradation of the drug and obtaining APA as the final product in 30 min. The evolution of ecotoxicity was intimately related to the disappearance of the chlorinated organic compounds and thus, the final HDC effluents were non-toxic. The versatility of the system was finally demonstrated in different environmentally-relevant matrices (wastewater treatment plant effluent and surface water).


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Diclofenaco/uso terapêutico , Halogenação/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Catálise , Diclofenaco/farmacologia
10.
Environ Sci Pollut Res Int ; 25(35): 34811-34817, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034425

RESUMO

In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50-90 °C), catalyst load (10-50 mg L-1 Fe3+), initial IL concentration (100-2000 mg L-1), and hydrogen peroxide dose (10-200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe3+]0 = 50 mg L-1; [H2O2]0 = 100% of the stoichiometric amount), the complete removal of [C4mim]Cl (1000 mg L-1) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe3+ amount and H2O2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol-1. The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.


Assuntos
Líquidos Iônicos/química , Modelos Químicos , Poluentes Químicos da Água/química , Catálise , Peróxido de Hidrogênio/química , Imidazóis , Cinética , Oxirredução
11.
J Hazard Mater ; 331: 45-54, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242528

RESUMO

CWPO has proved to be effective for the treatment of representative pharmaceuticals (sulfamethoxazole, atenolol, metronidazole, diltiazem, trimethoprim and ranitidine) in different water matrices (ultrapure water, surface water, WWTP effluent and hospital wastewater). Complete removal of the pollutants and the aromatic intermediates was achieved using the stoichiometric dose of H2O2, a catalyst (Fe3O4/γ-Al2O3) load of 2gL-1, pH 3 and temperature of 50-75°C. Accordingly, the ecotoxicity was reduced to negligible values. The degradation was faster when the pharmaceuticals were together, being the reaction time for the elimination of the most refractory species (metronidazole) shortened from 4h to 1h. The mineralization of the drugs was fairly different, being the most reactive species those containing several aromatic rings (XTOC∼80%) and the most refractory that bearing an imidazolium ring (XTOC∼35%). The water matrix affected the kinetics of the process but in all cases complete conversion of the drugs was reached within 1h. The presence of dissolved organic matter (surface water) seemed to promote drugs degradation while the occurrence of inorganic ions (real WTTP and hospital effluents) partially inhibited it due to scavenging effects. Remarkably, the process was successfully operated at the typical concentrations of main micropollutant sources (µgL-1).


Assuntos
Óxido Ferroso-Férrico/química , Peróxidos/química , Preparações Farmacêuticas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Óxido de Alumínio , Peróxido de Hidrogênio , Oxirredução , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química
12.
Chemosphere ; 109: 34-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24873704

RESUMO

The application of the Fenton process for the treatment of sawmill wastewater has been investigated. The sawmill wastewater was characterized by a moderate COD load (≈3gL(-1)), high ecotoxicity (≈ 40 toxicity units) and almost negligible BOD/COD ratio (5×10(-3)) due to the presence of different fungicides such as propiconazole and 3-iodo-2-propynyl butyl carbamate, being the wastewater classified as non-biodegradable. The effect of the key Fenton variables (temperature (50-120°C), catalyst concentration (25-100 mg L(-1) Fe(3+)), H2O2 dose (1 and 2 times the stoichiometric dose) and the mode of H2O2 addition) on COD reduction and mineralization was investigated in order to fulfill the allowable local limits for industrial wastewater discharge and achieve an efficient consumption of H2O2 in short reaction times (1h). Increasing the temperature clearly improved the oxidation rate and mineralization degree, achieving 60% COD reduction and 50% mineralization at 120°C after 1h with the stoichiometric H2O2 dose and 25 mg L(-1) Fe(3+). The distribution of H2O2 in multiple additions throughout the reaction time was clearly beneficial avoiding competitive scavenging reactions and thus, achieving higher efficiencies of H2O2 consumption (XCOD ≈ 80%). The main by-products were non-toxic short-chain organic acids (acetic, oxalic and formic). Thus, the application of the Fenton process allowed reaching the local limits for industrial wastewater discharge into local sewer system at a relatively low cost.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Catálise , Oxirredução , Temperatura , Eliminação de Resíduos Líquidos/economia , Purificação da Água/economia
13.
Water Res ; 47(9): 3070-80, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23561499

RESUMO

Degradation of chlorophenols by a sequential combination of hydrodechlorination (HDC) and catalytic wet peroxide oxidation (CWPO) using a new magnetic Pd-Fe/γ-Al2O3 catalyst has been studied. This catalyst is active in both hydrodechlorination of chlorophenols and decomposition of H2O2 for the oxidation of organic compounds. The sequential combination of HDC and CWPO allows overcoming some of the drawbacks of both treatments applied independently. The HDC step achieves the complete dechlorination of chlorophenols, so that the subsequent CWPO does not lead to the formation of highly toxic chlorinated by-products and reduces significantly the organic load of the effluent. The results showed that the presence of iron in the Pd catalyst improved significantly its hydrodechlorination rate, achieving the complete dechlorination of chlorophenols in a short reaction time (≈ 15 min), giving rise to phenol and cyclohexanone. The CWPO of synthetic mixtures of phenol and cyclohexanone showed that a high phenol concentration promotes the oxidation of all the organic species, but the presence of cyclohexanone seems to hinder the formation of aromatic radicals limiting the effectiveness of the CWPO step. Therefore, the effective combination of HDC and CWPO requires that the HDC step achieves the complete dechlorination of chlorophenols but no further hydrogenation is needed. The Pd-Fe/γ-Al2O3 catalyst showed a high activity in both HDC and subsequent CWPO of chlorophenols being easily separated and recovered from the reaction medium due to its ferromagnetic properties. In spite of a moderate loss of activity, the complete dechlorination of chlorophenol and a negligible ecotoxicity of the final effluents were maintained upon successive applications of HDC + CWPO in a four-cycles test.


Assuntos
Óxido de Alumínio/química , Clorofenóis/química , Halogenação , Ferro/química , Fenômenos Magnéticos , Paládio/química , Análise da Demanda Biológica de Oxigênio , Catálise , Clorofenóis/toxicidade , Peróxido de Hidrogênio/química , Oxirredução , Eliminação de Resíduos Líquidos
14.
J Hazard Mater ; 190(1-3): 993-1000, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21550169

RESUMO

Homogeneous Fenton-like (H(2)O(2)/Fe(3+)) oxidation proved to be highly efficient in the degradation of monochlorophenols but some important issues need to be considered depending on the operating conditions. When using the stoichiometric amount of H(2)O(2) and a dose of Fe(3+) in the range of 10-20mg/L, complete breakdown of 4-CP up to CO(2) and short-chain acids was achieved. Nevertheless, when substoichiometric amounts of H(2)O(2) or lower concentrations of iron were used, significant differences between the TOC measured and the calculated from the identified species were found. These differences were attributed to condensation byproducts, including chlorinated species, formed by oxidative coupling reactions. PCBs, dioxins and dichlorodiphenyl ethers were identified. A solid residue was also formed consisting mainly in carbon, oxygen and chlorine including also Fe. The occurrence of these highly toxic species must be carefully considered in the application of Fenton oxidation to wastewaters containing chlorophenols. The possibility of reducing costs by lowering the H(2)O(2) dose below the stoichiometric one needs to take this into account.


Assuntos
Clorofenóis/química , Halogenação , Peróxido de Hidrogênio/química , Resíduos Industriais/prevenção & controle , Ferro/química , Dioxinas , Éteres , Oxirredução , Bifenilos Policlorados , Poluentes Químicos da Água/síntese química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...