Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; 47(4): 397-434, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33751923

RESUMO

Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Salmonella/microbiologia , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Animais , Proteínas de Bactérias/genética , Ecossistema , Humanos , Salmonella enterica/genética , Transdução de Sinais , Virulência
2.
Tuberculosis (Edinb) ; 126: 102043, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33370646

RESUMO

Although treatable with antibiotics, tuberculosis is a leading cause of death. Mycobacterium tuberculosis antibiotic resistance is becoming increasingly common and disease control is challenging. Conventional drug susceptibility testing takes weeks to produce results, and treatment is often initiated empirically. Therefore, new methods to determine drug susceptibility profiles are urgent. Here, we used mass-spectrometry-based metabolomics to characterize the metabolic landscape of drug-susceptible (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tuberculosis. Direct infusion mass spectrometry data showed that DS, MDR, and XDR strains have distinct metabolic profiles, which can be used to predict drug susceptibility and resistance. This was later confirmed by Ultra-High-Performance Liquid Chromatography and High-Resolution Mass Spectrometry, where we found that levels of ions presumptively identified as isoleucine, proline, hercynine, betaine, and pantothenic acid varied significantly between strains with different drug susceptibility profiles. We then confirmed the identification of proline and isoleucine and determined their absolute concentrations in bacterial extracts, and found significantly higher levels of these amino acids in DS strains, as compared to drug-resistant strains (combined MDR and XDR strains). Our results advance the current understanding of the effect of drug resistance on bacterial metabolism and open avenues for the detection of drug resistance biomarkers.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/metabolismo , Metaboloma/fisiologia , Metabolômica/métodos , Mycobacterium tuberculosis/metabolismo , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação
3.
Tuberculosis (Edinb) ; 113: 163-174, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30514498

RESUMO

Tuberculosis patients taking second line drugs such as ethionamide (ETH) have often experienced previous treatment failure and usually have a complex history of disease and treatment that can span decades. Mutations in the ETH activating enzyme, EthA, confer resistance through undescribed mechanisms. To explore the impact of EthA mutations on ETH resistance, data from a total of 160 ETHR isolates was analysed. The most frequently mutated positions are within regions that display sequence conservation with the active site of OTEMO, another FAD-containing NADH-binding Baeyer-Villiger monooxygenase (BVMO), or with the sugar binding site of galectin-4N. Additionally, to look at a possible role of EthR on ETH resistance we purified an EthR mutant identified in a clinical isolate, F110L, and found it to bind the ethA-ethR intergenic region with higher affinity than the wild type regulator in gel shift assays. The ability of cyclic di-GMP to enhance DNA binding is maintained in the EthR mutant. To our knowledge, this is the first ETH resistance study that combines sequence and resistance data of clinical isolates with functional and structural information.


Assuntos
Antituberculosos/uso terapêutico , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Etionamida/uso terapêutico , Loci Gênicos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Sítios de Ligação , DNA Bacteriano/isolamento & purificação , Genótipo , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/isolamento & purificação , Oxirredutases/genética , Fenótipo , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/genética , Relação Estrutura-Atividade , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...