Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19978, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809756

RESUMO

Recycled aggregate (RA) made from waste concrete is an environmentally friendly alternative to natural aggregate (NA) for concrete manufacturing. However, compared to NA concrete, concrete produced with recycled aggregates has poor characteristics. Supplementary cementitious materials (SCMs) can be used to enhance the poor properties of recycled aggregate concrete (RAC). Silica fume and fly ash are commonly used SCMs in the World, but their high usage led to a shortage of silica fume and fly ash. Still, the deficiency of these materials in large parts of the world is a challenge that requires exploring alternative feedstock materials for the construction industry in the coming years. Wheat straw ash (WSA) is an agricultural waste product that could be used as an alternative SCM due to its pozzolanic behavior to enhance the properties of RAC. In addition, concrete is brittle and needs reinforcement, for which polypropylene fibers (PPFs) can be used. The current research examines the mechanical characteristics of fiber-reinforced RAC, including compressive strength, splitting tensile strength, and ductility performance. Durability indicators, such as chloride diffusion, chloride penetration, acid resistance, and water absorption test, were also assessed. The results showed that concrete samples with 10% WSA, 50% RA and 1.5% PPFs had the highest compressive and splitting tensile strength, 60.2 MPa and 7.25 MPa, respectively, representing increases of 24.75% and 30.65%, as compared to plain samples at 56 days. In these samples, water absorption was reduced by 13% due to the finer WSA particles resulting in the lowest reduction in strength and mass recorded when exposing concrete samples to acidic media. The statistical analysis also validated that irrespective of WSA and PPFs, the concrete with 0% RA had the highest performance in strength and durability behavior. The study showed that WSA and PPFs might be employed in tandem to offset the poor behavior of RA, enhance the bond between fibers and concrete, and improve the mechanical strength and durability performance of RAC, thus demonstrating its suitability as a sustainable and economical construction material.

4.
PLoS One ; 18(5): e0285692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37216387

RESUMO

Reprocessing solid waste materials is a low-cost method of preserving the environment, conserving natural resources, and reducing raw material consumption. Developing ultra-high-performance concrete materials requires an immense quantity of natural raw materials. The current study seeks to tackle this issue by evaluating the effect of various discarded materials, waste glass (GW), marble waste (MW), and waste rubber powder (WRP) as a partial replacement of fine aggregates on the engineering properties of sustainable ultra-high-performance fiber-reinforced geopolymer concrete (UHPGPC). Ten different mixtures were developed as a partial substitute for fine aggregate, each containing 2% double-hooked end steel fibers, 5%, 10%, and 15% GW, MW, and WRP. The present study assessed the fresh, mechanical, and durability properties of UHPGPC. In addition, to evaluate concrete development at the microscopic level due to the addition of GW, MW, and WRP. Spectra of X-ray diffraction (XRD), thermogravimetric analysis (TGA), and mercury intrusion (MIP) tests were conducted. The test results were compared to current trends and procedures identified in the literature. According to the study, adding 15% marble waste and 15% waste rubber powder reduced ultra-high-performance geopolymer concrete's strength, durability, and microstructure properties. Even so, adding glass waste improved the properties, as the sample with 15% GW had the highest compressive strength of 179 MPa after 90 days. Furthermore, incorporating glass waste into the UHPGPC resulted in a good reaction between the geopolymerization gel and the waste glass particles, enhancing strength properties and a packed microstructure. The inclusion of glass waste in the mix resulted in the control of crystal-shaped humps of quartz and calcite, according to XRD spectra. During the TGA analysis, the UHPGPC with 15% glass waste had the minimum weight loss (5.64%) compared to other modified samples.


Assuntos
Borracha , Resíduos Sólidos , Pós , Carbonato de Cálcio , Força Compressiva
5.
PLoS One ; 18(4): e0282435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079561

RESUMO

Because of the recent progress in materials properties, specifically high-strength concrete, further research is needed to evaluate its suitability, understanding, and performance in the modern-day world. This research aims to enhance the performance of ultra-high-strength geopolymer concrete (UHS-GPC) by adding nano-silica (NS) and polypropylene fibers (PPFs). Three 1%, 2%, and 3% different amounts of PPFs and three NS 5%, 10%, and 15% were utilized in the samples. Various performance parameters of UHS-GPC were evaluated, such as fresh property, compressive strength, modulus of elasticity split tensile, flexural and bonding strength, drying shrinkage, load-displacement test, fracture performance, and elevated temperature. The test outcomes showed that by raising the percentage of PPFs and NS to the allowable limit, the performance of UHS-GPC can be improved significantly. The most improved performance of UHS-GPC was obtained at 2% polypropylene fibers and 10% nano-silica, as the compressive, splitting tensile, flexural. Bond strength was improved by 17.07%, 47.1%, 36.52, and 37.58%, and the modulus of elasticity increased by 31.4% at 56 days. The study showed that the sample with 2% PPFs and 10% NS had excellent performance in the load-displacement test, drying shrinkage, fracture behavior, and elevated temperature. At 750°C elevated temperature, the samples' strength was reduced drastically, but at 250°C, the modified samples showed good resistance to heat by retaining their compressive strength to some degree. The present work showed the suitability of PPFs and NS to develop ultra-high-strength geopolymer concrete, which can be used as a possible alternate material for Portland cement-based concrete.


Assuntos
Compressão de Dados , Fraturas Ósseas , Gastrópodes , Animais , Polipropilenos , Força Compressiva , Dessecação , Elasticidade , Febre , Dióxido de Silício
6.
Materials (Basel) ; 15(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955167

RESUMO

A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60-70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques-Levenberg-Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)-to estimate the 28-day compressive strength (f'c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f'c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%).

7.
Materials (Basel) ; 15(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955288

RESUMO

A main global challenge is finding an alternative material for cement, which is a major source of pollution to the environment because it emits greenhouse gases. Investigators play a significant role in global waste disposal by developing appropriate methods for its effective utilization. Geopolymers are one of the best options for reusing all industrial wastes containing aluminosilicate and the best alternative materials for concrete applications. Waste wood ash (WWA) is used with other waste materials in geopolymer production and is found in pulp and paper, wood-burning industrial facilities, and wood-fired plants. On the other hand, the WWA manufacturing industry necessitates the acquisition of large tracts of land in rural areas, while some industries use incinerators to burn wood waste, which contributes to air pollution, a significant environmental problem. This review paper offers a comprehensive review of the current utilization of WWA with the partial replacement with other mineral materials, such as fly ash, as a base for geopolymer concrete and mortar production. A review of the usage of waste wood ash in the construction sector is offered, and development tendencies are assessed about mechanical, durability, and microstructural characteristics. The impacts of waste wood ash as a pozzolanic base for eco-concreting usages are summarized. According to the findings, incorporating WWA into concrete is useful to sustainable progress and waste reduction as the WWA mostly behaves as a filler in filling action and moderate amounts of WWA offer a fairly higher compressive strength to concrete. A detail study on the source of WWA on concrete mineralogy and properties must be performed to fill the potential research gap.

8.
Materials (Basel) ; 15(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744223

RESUMO

Several types of research currently use machine learning (ML) methods to estimate the mechanical characteristics of concrete. This study aimed to compare the capacities of four ML methods: eXtreme gradient boosting (XG Boost), gradient boosting (GB), Cat boosting (CB), and extra trees regressor (ETR), to predict the splitting tensile strength of 28-day-old self-compacting concrete (SCC) made from recycled aggregates (RA), using data obtained from the literature. A database of 381 samples from literature published in scientific journals was used to develop the models. The samples were randomly divided into three sets: training, validation, and test, with each having 267 (70%), 57 (15%), and 57 (15%) samples, respectively. The coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) metrics were used to evaluate the models. For the training data set, the results showed that all four models could predict the splitting tensile strength of SCC made with RA because the R2 values for each model had significance higher than 0.75. XG Boost was the model with the best performance, showing the highest R2 value of R2 = 0.8423, as well as the lowest values of RMSE (=0.0581) and MAE (=0.0443), when compared with the GB, CB, and ETR models. Therefore, XG Boost was considered the best model for predicting the splitting tensile strength of 28-day-old SCC made with RA. Sensitivity analysis revealed that the variable contributing the most to the split tensile strength of this material after 28 days was cement.

9.
Materials (Basel) ; 15(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35407698

RESUMO

The by-product of the foundry industry is waste foundry sand (WFS). The use of WFS in building materials will safeguard the ecosystem and environmental assets while also durable construction. The use of industrial waste in concrete offsets a shortage of environmental sources, solves the waste dumping trouble and provides another method of protecting the environment. Several researchers have investigated the suitability of WFS in concrete production instead of natural river sand in the last few decades to discover a way out of the trouble of WFS in the foundry region and accomplish its recycling in concrete production. However, a lack of knowledge about the progress of WFS in concrete production is observed and compressive review is required. The current paper examines several properties, such as the physical and chemical composition of WFS, fresh properties, mechanical and durability performance of concrete with partially substituting WFS. The findings from various studies show that replacing WFS up to 30% enhanced the durability and mechanical strength of concrete to some extent, but at the same time reduced the workability of fresh concrete as the replacement level of WFS increased. In addition, this review recommended pozzolanic material or fibre reinforcement in combination with WFS for future research.

11.
Sci Rep ; 12(1): 4306, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279672

RESUMO

The knowledge of sustainable development believes that natural resources should be treated limited, and waste must be managed rationally. This idea and the constant striving to reduce production costs make the use of waste materials potential substitutes for traditionally used raw materials. In cement concrete technology, there are many possibilities to use waste materials either as cement replacement or aggregate in concrete production. The basic aim of this research work is to study the impact of wooden ash (WA) as binding material in proportions 10%, 20%, and 30% by weight of cement on high strength ductile cementitious composite concrete. The fresh property was evaluated through the slump cone test, while the mechanical property was evaluated through compressive and split tensile strength test. Load deflection curve, ductility index, and maximum and minimum crack were also studied to find flexure cracking behaviors of reinforced cement concrete (RCC) beam. The durability of high-strength ductile concrete was studied through water absorption and acid attacks test. Pozzolanic activity of wooden ash was studied through XRD analysis.

12.
Materials (Basel) ; 15(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057148

RESUMO

The current practice of concrete is thought to be unsuitable because it consumes large amounts of cement, sand, and aggregate, which causes depletion of natural resources. In this study, a step towards sustainable concrete was made by utilizing recycled concrete aggregate (RCA) as a coarse aggregate. However, researchers show that RCA causes a decrease in the performance of concrete due to porous nature. In this study, waste glass (WG) was used as a filler material that filled the voids between RCA to offset its negative impact on concrete performance. The substitution ratio of WG was 10, 20, or 30% by weight of cement, and RCA was 20, 40, and 60% by weight of coarse aggregate. The slump cone test was used to assess the fresh property, while compressive, split tensile, and punching strength were used to assess the mechanical performance. Test results indicated that the workability of concrete decreased with substitution of WG and RCA while mechanical performance improved up to a certain limit and then decreased due to lack of workability. Furthermore, a statical tool response surface methodology was used to predict various strength properties and optimization of RCA and WG.

13.
Materials (Basel) ; 14(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947094

RESUMO

Recycled aggregate is a good option to be used in concrete production as a coarse aggregate that results in environmental benefits as well as sustainable development. However, recycled aggregate causes a reduction in the mechanical and durability performance of concrete. On the other hand, the removal of industrial waste would be considerably decreased if it could be incorporated into concrete production. One of these possibilities is the substitution of the cement by slag, which enhances the concrete poor properties of recycled aggregate concrete as well as provides a decrease in cement consumption, reducing carbon dioxide production, while resolving a waste management challenge. Furthermore, steel fiber was also added to enhance the tensile capacity of recycled aggregate concrete. The main goal of this study was to investigate the characteristics of concrete using ground granulated blast-furnace slag (GGBS) as a binding material on recycled aggregate fibers reinforced concrete (RAFRC). Mechanical performance was assessed through compressive strength and split tensile strength, while durability aspects were studied through water absorption, acid resistance, and dry shrinkage. The results detected from the different experiments depict that, at an optimum dose (40% RCA, 20%GGBS, and 2.0%), compressive and split tensile strength were 39% and 120% more than the reference concrete, respectively. Furthermore, acid resistance at the optimum dose was 36% more than the reference concrete. Furthermore, decreased water absorption and dry shrinkage cracks were observed with the substitution of GGBS into RAFRC.

14.
Sci Rep ; 11(1): 21525, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728731

RESUMO

Industrial waste has been rapidly increased day by day because of the fast-growing population which results environmental pollutions. It has been recommended that the disposal of industrial waste would be greatly reduced if it could be incorporated in concrete production. In cement concrete technology, there are many possibilities to use waste materials either as cement replacement or aggregate in concrete production. Two major industrials waste are glass and marble waste. The basic objective of this investigation is to examine the characteristics of concrete waste glass (WG) as binding material in proportions 10%, 20% and 30% by weight of cement. Furthermore, to obtain high strength concrete, waste marble in proportion of 40%, 50% and 60% by weight cement as fine aggregate were used as a filler material to fill the voids between concrete ingredients. Fresh properties were evaluated through slump cone test while mechanical performance was evaluated through compressive strength and split tensile strength which were performed after 7 days, 28 days and 56 days curing. Results show that, workability of concrete decreased with incorporation of waste glass and marble waste. Furthermore, mechanical performance improved considerably up 20% and 50% substitution of waste glass and waste marble respectively. Statistical approach of Response Surface Methodology (RSM) was used optimize both waste materials in concrete. Results indicate better agreement between statistical and experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...