Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696039

RESUMO

Integrated production systems have been proposed as alternative to sustainable land use. However, information regarding bacterial community structure and diversity in soils of integrated Crop-Livestock-Forest systems remains unknown. We hypothesize that these integrated production systems, with their ecological intensification, can modulate the soil bacterial communities. However, Yet, it remains unclear whether the modulation of bacterial biodiversity is solely attributable to the complexity of root exudates or if seasonal climatic events also play a contributory role. The objective of this study is to evaluate the impact of monoculture and integrated production systems on bacterial soil communities in the Amazon Biome, Brazil. Three monoculture systems, each with a single crop over time and space (Eucalyptus (E), Crop Soybean (C), Pasture (P)), and three integrated systems with multiple crops over time and space (ECI, PI, ECPI) were evaluated, along with a Native forest serving as a reference area. Soil samples were collected at a depth of 0-10 cm during both the wet and dry seasons. Bacterial composition was determined using Illumina high-throughput sequencing of the 16 S rRNA gene. The sequencing results revealed the highest abundance classified under the phyla Firmicutes, Actinobacteria, and Proteobacteria. The Firmicutes correlated with the Crop in the rainy period and in the dry only ECPI and Forest. For five classes corresponding to the three phyla, the Crop stood out with the greatest fluctuations in their relative abundance compared to other production systems. In cluster analysis by genus during the rainy season, only Forest and ECPI showed no similarity with the other production systems. However, in the dry season, both were grouped with Forest and EPI. Therefore, the bacterial community in integrated systems proved to be sensitive to management practices, even with only two years of use. ECPI demonstrated the greatest similarity in bacterial structure to the Native forest, despite just two years of experimental deployment. Crop exhibited fluctuations in relative abundance in both seasons, indicating an unsustainable production system with changes in soil microbial composition. These findings support our hypothesis that integrated production systems and their ecological intensification, as exemplified by ECPI, can indeed modulate soil bacterial communities.

2.
Environ Sci Pollut Res Int ; 25(30): 30410-30424, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159846

RESUMO

Due to their renewable and sustainable nature, biodiesel blends boost studies predicting their stability during storage. Besides chemical degradation, biodiesel is more susceptible to biodegradation due to its raw composition. The aim of this work was to evaluate the deteriogenic potential (growth and degradation) of Pseudallescheria boydii and Meyerozyma guilliermondii in degrading pure diesel (B0), pure biodiesel (B100), and a B10 blend in mineral medium during storage. The biodeterioration susceptibility at different fuel ratios and in BH minimal mineral medium were evaluated. The biomass measurements of P. boydii during 45 days indicated higher biomass production in the B10 blend. The growth curve of M. guilliermondii showed similar growth in B10 and B100. Although there was no significant production of biosurfactant, lipase production was detected in the tributyrin agar medium of both microorganisms. The main compounds identified in the aqueous phase by GC-MS were alcohols, esters, acids, sulfur, ketones, and phenols. The results showed that P. boydii grew at the expense of fuels, degrading biodiesel esters, and diesel hydrocarbons. M. guilliermondii grew in B100 and B10; however, degradation was not detected.


Assuntos
Ascomicetos/fisiologia , Biocombustíveis/microbiologia , Gasolina/microbiologia , Biomassa , Brasil , Fatores de Tempo
3.
Microb Ecol ; 69(2): 395-406, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395291

RESUMO

The Park Grass experiment (PGE) in the UK has been ongoing since 1856. Its purpose is to study the response of biological communities to the long-term treatments and associated changes in soil parameters, particularly soil pH. In this study, soil samples were collected across pH gradient (pH 3.6-7) and a range of fertilizers (nitrogen as ammonium sulfate, nitrogen as sodium nitrate, phosphorous) to evaluate the effects nutrients have on soil parameters and microbial community structure. Illumina 16S ribosomal RNA (rRNA) amplicon sequencing was used to determine the relative abundances and diversity of bacterial and archaeal taxa. Relationships between treatments, measured soil parameters, and microbial communities were evaluated. Clostridium, Bacteroides, Bradyrhizobium, Mycobacterium, Ruminococcus, Paenibacillus, and Rhodoplanes were the most abundant genera found at the PGE. The main soil parameter that determined microbial composition, diversity, and biomass in the PGE soil was pH. The most probable mechanism of the pH impact on microbial community may include mediation of nutrient availability in the soil. Addition of nitrogen to the PGE plots as ammonium sulfate decreases soil pH through increased nitrification, which causes buildup of soil carbon, and hence increases C/N ratio. Plant species richness and plant productivity did not reveal significant relationships with microbial diversity; however, plant species richness was positively correlated with soil microbial biomass. Plants responded to the nitrogen treatments with an increase in productivity and a decrease in the species richness.


Assuntos
Archaea/classificação , Bactérias/classificação , Poaceae/microbiologia , Microbiologia do Solo , Solo/química , Sulfato de Amônio/química , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Biomassa , Carbono/química , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Nitratos/química , Nitrificação , Nitrogênio/química , Fósforo/química , Poaceae/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
ISME J ; 7(4): 850-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23254516

RESUMO

Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes-Bacillaceae, (b) Actinobacteria-Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria-Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes-Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health.


Assuntos
Microbiologia do Ar , Bactérias/classificação , Bactérias/isolamento & purificação , Poeira , Fungos/classificação , Vento , África do Norte , Cabo Verde , Chade , Clima Desértico , Poeira/análise , Fungos/isolamento & purificação , Solo/análise
5.
Front Microbiol ; 3: 210, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715335

RESUMO

Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...