Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PhytoKeys ; 240: 1-552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912426

RESUMO

Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.

2.
Syst Biol ; 69(4): 613-622, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065640

RESUMO

Phylogenomic analyses have helped resolve many recalcitrant relationships in the angiosperm tree of life, yet phylogenetic resolution of the backbone of the Leguminosae, one of the largest and most economically and ecologically important families, remains poor due to generally limited molecular data and incomplete taxon sampling of previous studies. Here, we resolve many of the Leguminosae's thorniest nodes through comprehensive analysis of plastome-scale data using multiple modified coding and noncoding data sets of 187 species representing almost all major clades of the family. Additionally, we thoroughly characterize conflicting phylogenomic signal across the plastome in light of the family's complex history of plastome evolution. Most analyses produced largely congruent topologies with strong statistical support and provided strong support for resolution of some long-controversial deep relationships among the early diverging lineages of the subfamilies Caesalpinioideae and Papilionoideae. The robust phylogenetic backbone reconstructed in this study establishes a framework for future studies on legume classification, evolution, and diversification. However, conflicting phylogenetic signal was detected and quantified at several key nodes that prevent the confident resolution of these nodes using plastome data alone. [Leguminosae; maximum likelihood; phylogenetic conflict; plastome; recalcitrant relationships; stochasticity; systematic error.].


Assuntos
Fabaceae/classificação , Fabaceae/genética , Genomas de Plastídeos/genética , Filogenia
3.
PhytoKeys ; 164: 67-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34531697

RESUMO

The Dioclea clade comprises four genera and aproximately 60 species of the tribe Diocleae: Cleobulia (4 species), Cymbosema (1), Dioclea (ca. 50), Luzonia (1) and Macropsychanthus (3-4). Dioclea has been demonstrated to be a non-monophyletic genus, but low sampling in previous phylogenetic studies hampered the adoption of new taxonomic arrangements. We carried out densely sampled phylogenetic analyses of the Dioclea clade using molecular markers that had performed well in previous studies: the ITS and ETS nuclear ribosomal regions and the plastid trnK/matK. Our results support the maintenance of the genera Cleobulia and Cymbosema with their current circumscriptions, but confirmed the polyphyly of Dioclea, with its species falling into three different positions: (1) the puzzling species, Dioclea paniculata, was highly supported as a member of the Galactia clade; (2) Dioclea subg. Dioclea appeared as sister to a clade composed of Cleobulia and Cymbosema; and (3) the species of Dioclea subgenera Pachylobium and Platylobium composed a paraphyletic grade nesting the genera Luzonia and Macropsychanthus. We thus propose that the circumscription of Dioclea should be restricted to Dioclea subg. Dioclea, with 13 species and that the limits of Macropsychanthus should be widened to include the genus Luzonia, as well as the Dioclea subgenera Pachylobium and Platylobium, with 46 species. Taxonomic summaries, new combinations and synonyms are presented for all genera of the Dioclea clade. Cleobulia and Cymbosema were retained in their original circumscriptions. We presented an illustrated taxonomic conspectus of all genera of the Dioclea clade including 44 new combinations, one new name, ten new synonyms, two re-established holotypes, 38 lectotypes, two epitypes and one neotype.

4.
Proc Natl Acad Sci U S A ; 114(40): 10695-10700, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923966

RESUMO

Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.


Assuntos
Biodiversidade , Bases de Dados Factuais , Plantas/classificação , Floresta Úmida , Brasil
5.
Springerplus ; 5: 477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217992

RESUMO

The Anacardiaceae is an important and worldwide distributed family of ecological and socio-economic relevance. Notwithstanding that, molecular studies in this family are scarce and problematic because of the particularly high concentration of secondary metabolites-i.e. tannins and oleoresins-that are present in almost all tissues of the many members of the group, which complicate the purification and amplification of the DNA. The objective of this work was to improve an available DNA isolation method for Schinopsis spp. and other related Anacardiaceae, as well as the PCR protocols for DNA amplification of the chloroplast trnL-F, rps16 and ndhF and nuclear ITS-ETS fragments. The modifications proposed allowed the extraction of 70-120 µg of non-degraded genomic DNA per gram of dry tissue that resulted useful for PCR amplification. PCR reactions produced the expected fragments that could be directly sequenced. Sequence analyses of amplicons showed similarity with the corresponding Schinopsis accessions available at GenBank. The methodology presented here can be routinely applied for molecular studies of the group aimed to clarify not only aspects on the molecular biology but also the taxonomy and phylogeny of this fascinating group of vascular plants.

6.
Mol Phylogenet Evol ; 97: 11-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748266

RESUMO

Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology.


Assuntos
Fabaceae/classificação , Fabaceae/microbiologia , Micorrizas , Filogenia , Teorema de Bayes , Evolução Biológica , Cloroplastos/genética , Fabaceae/anatomia & histologia , Fabaceae/genética , Flores/anatomia & histologia , Funções Verossimilhança , Nódulos Radiculares de Plantas/microbiologia , Simbiose
7.
PhytoKeys ; (71): 1-160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28814915

RESUMO

The Caesalpinia group is a large pantropical clade of ca. 205 species in subfamily Caesalpinioideae (Leguminosae) in which generic delimitation has been in a state of considerable flux. Here we present new phylogenetic analyses based on five plastid and one nuclear ribosomal marker, with dense taxon sampling including 172 (84%) of the species and representatives of all previously described genera in the Caesalpinia group. These analyses show that the current classification of the Caesalpinia group into 21 genera needs to be revised. Several genera (Poincianella, Erythrostemon, Cenostigma and Caesalpinia sensu Lewis, 2005) are non-monophyletic and several previously unclassified Asian species segregate into clades that merit recognition at generic rank. In addition, the near-completeness of our taxon sampling identifies three species that do not belong in any of the main clades and these are recognised as new monospecific genera. A new generic classification of the Caesalpinia group is presented including a key for the identification of genera, full generic descriptions, illustrations (drawings and photo plates of all genera), and (for most genera) the nomenclatural transfer of species to their correct genus. We recognise 26 genera, with reinstatement of two previously described genera (Biancaea Tod., Denisophytum R. Vig.), re-delimitation and expansion of several others (Moullava, Cenostigma, Libidibia and Erythrostemon), contraction of Caesalpinia s.s. and description of four new ones (Gelrebia, Paubrasilia, Hererolandia and Hultholia), and make 75 new nomenclatural combinations in this new generic system.

8.
Mol Phylogenet Evol ; 90: 1-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25934529

RESUMO

Deciphering the phylogenetic relationships within the species-rich Millettioid clade has persisted as one of the major challenges in the systematics and evolutionary history of papilionoid legumes (Leguminosae, Papilionoideae). Historically, the predominantly neotropical lianas of subtribe Diocleinae in the Millettioid legumes have been taxonomically tangled together with the largely heterogeneous tribe Phaseoleae. This work presents a comprehensive molecular phylogenetic analysis based on nuclear and chloroplast markers and includes all genera ever referred to Diocleae except for the monospecific Philippine Luzonia, resolving several key generic relationships within the Millettioid legumes. The first of two separate analyses includes 310 matK accessions and strongly supports the reestablishment of tribe Diocleae as a branch of the Millettioid clade. This work sheds greater light on the higher-level phylogeny of Diocleae and allows the recognition of three major lineages: the Canavalia, Dioclea, and Galactia clades. The second set of phylogenetic analyses utilized nuclear (ITS/5.8S and ETS) and plastid (matK and trnT-Y) DNA sequences to reveal (i) the monophyly of Canavalia and Cleobulia; (ii) the monophyly of Bionia with the exclusion of Bionia bella; (iii) the paraphyly of Dioclea with respect to Cleobulia, Cymbosema, and Macropsychanthus; (iv) the paraphyly of Cratylia with respect to the broadly polyphyletic Camptosema; and (v) the polyphyly of Galactia with species scattered widely across the tree.


Assuntos
Dioclea/classificação , Filogenia , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , Cloroplastos/genética , DNA de Plantas/análise , DNA de Plantas/genética , Flores/genética , Humanos , Plastídeos/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
9.
Phytochemistry ; 116: 198-202, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25817832

RESUMO

Leaves of Petaladenium (Leguminosae), an Amazonian monospecific genus recently revealed as a member of the Amburaneae clade among the earliest-diverging papilionoid legumes, were found to accumulate three monomethyl ethers of 4,5-dihydroxypipecolic acids. These were characterised by spectroscopic means as the (2S,4S,5R) and (2S,4R,5S) epimers of 5-hydroxy-4-methoxypipecolic acid and (2S,4R,5R)-4-hydroxy-5-methoxypipecolic acid. These compounds were not detected in any other genera in the Amburaneae clade or the wider Angylocalyceae-Dipterygeae-Amburaneae (ADA) clade of papilionoid legumes. Hydroxypipecolic acids, however, were detected in leaves of Myrocarpus and Myroxylon (sister genera in the Amburaneae clade), Angylocalyx and Xanthocercis (sister genera in the Angylocalyceae clade) and Monopteryx (Dipterygeae clade), and were also present in Petaladenium. Iminosugars, known to be accumulated by all four genera in the Angylocalyceae clade (Alexa, Angylocalyx, Castanospermum and Xanthocercis), were found to be characteristic of this group within the ADA clade.


Assuntos
Fabaceae/química , Ácidos Pipecólicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Ácidos Pipecólicos/química , Folhas de Planta/química , Estereoisomerismo
10.
Mol Phylogenet Evol ; 84: 112-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575702

RESUMO

Recent deep-level phylogenies of the basal papilionoid legumes (Leguminosae, Papilionoideae) have resolved many clades, yet left the phylogenetic placement of several genera unassessed. The phylogenetically enigmatic Amazonian monospecific genus Petaladenium had been believed to be close to the genera of the Genistoid Ormosieae clade. In this paper we provide the first DNA phylogenetic study of Petaladenium and show it is not part of the large Genistoid clade, but is a new branch of the Amburaneae clade, one of the first-diverging lineages of the Papilionoideae phylogeny. This result is supported by the chemical observation that the quinolizidine alkaloids, a chemical synapomorphy of the Genistoids, are absent in Petaladenium. Parsimony and Bayesian phylogenetic analysis of nuclear ITS/5.8S and plastid matK and trnL intron agree with a new interpretation of morphology that Petaladenium is sister to Dussia, a genus comprising ∼18 species of trees largely confined to rainforests in Central America and northern South America. Petaladenium, Dussia, and Myrospermum have papilionate flowers in a clade otherwise with radial floral symmetry, loss of petals or incompletely differentiated petals. Our phylogenetic analyses also revealed well-supported resolution within the three main lineages of the ADA clade (Angylocalyceae, Dipterygeae, and Amburaneae). We also discuss further molecular phylogenetic evidence for the undersampled Amazonian genera Aldina and Monopteryx, and the tropical African Amphimas, Cordyla, Leucomphalos, and Mildbraediodendron.


Assuntos
Fabaceae/classificação , Filogenia , Teorema de Bayes , América Central , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Fabaceae/química , Íntrons , Modelos Genéticos , América do Norte , Folhas de Planta/química , Plastídeos/genética , Análise de Sequência de DNA
11.
PhytoKeys ; (38): 101-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009440

RESUMO

Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed.

12.
Appl Plant Sci ; 1(10)2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25202484

RESUMO

PREMISE OF THE STUDY: This work aimed to develop microsatellite markers for Cratylia mollis as tools to assess its genetic diversity and structure and to evaluate their potential cross-amplification in related species. • METHODS AND RESULTS: Microsatellite markers were developed using a microsatellite-enriched library and an intersimple sequence repeat library. From a set of 19 markers, 12 microsatellite loci were polymorphic and presented considerable variation in allele number (2-11), expected heterozygosity (0.226-0.883), and polymorphism information content per locus (0.212-0.870). Cross-amplification in C. argentea was successful in 16 loci, 12 of which were polymorphic (2-10 alleles). • CONCLUSIONS: The polymorphism of this set of microsatellite markers for C. mollis, as well as their successful cross-amplification in C. intermedia and C. bahiensis and their transferability to C. argentea, supports their use in future comparative studies to understand the mechanism involved in population divergence and speciation in the genus.

13.
Fitoterapia ; 78(7-8): 510-4, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17651913

RESUMO

Ethyl acetate and chloroform extracts from aerial parts of Portulaca werdermannii and P. hirsutissima were tested in lymphoproliferation assays and axenic cultures of Leishmania amazonensis and Trypanosoma cruzi. Both extracts of P. werdermannii and P. hirsutissima had a potent inhibitory activity on lymphocyte proliferation. On the contrary, only the chloroformic extract of both plants inhibited L. amazonensis growth, without effect on T. cruzi cultures. These results indicate these Portulaca species as potential sources of new active molecules for the treatment of leishmaniasis and immune-mediated pathologies.


Assuntos
Antiprotozoários/farmacologia , Fatores Imunológicos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Portulaca , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Proliferação de Células , Feminino , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/uso terapêutico , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos
14.
Ann Bot ; 99(4): 625-35, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17331960

RESUMO

BACKGROUND AND AIMS: Differences in the mating systems and the mechanisms of reproductive isolation between Chamaecrista desvauxii var. graminea and C. desvauxii var. latistipula were examined in the Chapada Diamantina, Brazil. These taxa occur sympatrically, and their populations demonstrate marked morphological differences. The objective of the present work was to determine if reproductive isolation mechanisms exist between these two populations of C. desvauxii, and to determine the influence of these putative mechanisms on their genetic differentiation. METHODS: Field observations were made of floral biology, phenology and floral visitation, and experiments on intra- and interpopulation pollination and germination rates of the resultant seeds were performed. A genetic examination of the populations was undertaken using four allozyme loci. KEY RESULTS: The varieties examined demonstrated overlapping of flowering periods during the months of June to September. The main pollinator for both varieties was the bee Bombus brevivillus. Both varieties are self-compatible, and a large number of fruits are formed in cross-pollinations with high seed germination rates. Inter-taxa pollinations result in high levels of fruit production, but no seeds are formed. Two of the four loci examined were diagnostic for the varieties, and exclusive high-frequency alleles were encountered at the other loci, leading to a high genetic distance between the two populations (0.495). CONCLUSIONS: Pre-zygotic barriers were not found between the two varieties, and these remain isolated due to post-zygotic events. The two varieties demonstrate marked differences in their morphology, floral biology, phenology and genetic make-up, all of which indicate that they should be treated as two distinct species. A complete revision involving the other varieties of the C. desvauxii complex will be necessary in order to define these two taxa formally.


Assuntos
Chamaecrista/fisiologia , Alelos , Brasil , Chamaecrista/anatomia & histologia , Chamaecrista/enzimologia , Flores/anatomia & histologia , Flores/enzimologia , Flores/fisiologia , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...