Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1111574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726377

RESUMO

The small GTPase Ran is the main regulator of the nucleo-cytoplasmic import and export through the nuclear pore complex. It functions as a molecular switch cycling between the GDP-bound inactive and GTP-bound active state. It consists of a globular (G) domain and a C-terminal region, which is bound to the G-domain in the inactive, GDP-bound states. Crystal structures of the GTP-bound active form complexed with Ran binding proteins (RanBP) show that the C-terminus undergoes a large conformational change, embracing Ran binding domains (RanBD). Whereas in the crystal structures of macromolecular complexes not containing RanBDs the structure of the C-terminal segment remains unresolved, indicating its large conformational flexibility. This movement could not have been followed either by experimental or simulation methods. Here, starting from the crystal structure of Ran in both GDP- and GTP-bound forms we show how rigid the C-terminal region in the inactive structure is during molecular dynamics (MD) simulations. Furthermore, we show how MD simulations of the active form are incapable of mapping the open conformations of the C-terminus. By using the MDeNM (Molecular Dynamics with excited Normal Modes) method, we were able to widely map the conformational surface of the C-terminus of Ran in the active GTP-bound form, which allows us to envisage how it can embrace RanBDs.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 208: 243-254, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30342339

RESUMO

Due to the high sensitivity to alterations in microenvironment polarity of macromolecules, pyrene and its derivatives have long been applied in biosciences. Human serum albumin (HSA), besides its numerous physiological functions, is the main responsible by transport of endogenous and exogenous compounds in the circulatory system. Here, a comprehensive study was carry out to understand the interaction between HSA and the pyrene derivative 1-pyrenesulfonic acid (PMS), which showed a singular behaviour when bound to this protein. The complexation of PMS with HSA was studied by steady state, time-resolved and anisotropy fluorescence, induction of circular dichroism (ICD) and molecular docking. The fluorescence quenching of PMS by HSA was abnormal, being stronger at lower concentration of the quencher. Similar behaviour was obtained by measuring the ICD signal and fluorescence lifetime of PMS complexed in HSA. The displacement of PMS by site-specific drugs showed that this probe occupied both sites, but with higher affinity for site II. The movement of PMS between these main binding sites was responsible by the abnormal effect. Using the holo (PDB: ID 1A06) and apo (PDB: ID 1E7A) HSA structures, the experimental results were corroborated by molecular docking simulation. The abnormal spectroscopic behaviour of PMS is related to its binding in different regions in the protein. The movement of PMS into the protein can be traced by alteration in the spectroscopic signals. These findings bring a new point of view about the use of fluorescence quenching to characterize the interaction between albumin and ligands.


Assuntos
Conalbumina/metabolismo , Pirenos/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica Humana/metabolismo , Ácidos Sulfônicos/metabolismo , Animais , Anisotropia , Sítios de Ligação , Bovinos , Dicroísmo Circular , Fluorescência , Humanos , Simulação de Acoplamento Molecular , Pirenos/química , Ácidos Sulfônicos/química , Termodinâmica , Fatores de Tempo , Triptofano/análogos & derivados , Triptofano/química
3.
Molecules ; 23(2)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473857

RESUMO

Dipeptidyl peptidase-4 (DPP-4) is a target to treat type II diabetes mellitus. Therefore, it is important to understand the structural aspects of this enzyme and its interaction with drug candidates. This study involved molecular dynamics simulations, normal mode analysis, binding site detection and analysis of molecular interactions to understand the protein dynamics. We identified some DPP-4 functional motions contributing to the exposure of the binding sites and twist movements revealing how the two enzyme chains are interconnected in their bioactive form, which are defined as chains A (residues 40-767) and B (residues 40-767). By understanding the enzyme structure, its motions and the regions of its binding sites, it will be possible to contribute to the design of new DPP-4 inhibitors as drug candidates to treat diabetes.


Assuntos
Dipeptidil Peptidase 4/química , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Sítios de Ligação , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
4.
J Mol Model ; 22(9): 196, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27488102

RESUMO

Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of µ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from µ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.


Assuntos
Miniproteínas Nó de Cistina/química , Modelos Moleculares , Venenos de Aranha/química , Aranhas/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...