Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 182: 1602-1610, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033823

RESUMO

Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 µg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 µg/mL highly mutagenic and 107.5 µg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 µg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 µg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Fosfolipases A2/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Drosophila melanogaster , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação/genética
2.
Food Chem Toxicol ; 131: 110557, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176925

RESUMO

The aim of the present study was to appraise the mutagenic and recombinogenic potential of bupropion hydrochloride (BHc) and trazodone hydrochloride (THc). We used standard (ST) and the high bioactivation (HB) crossings from Drosophila melanogaster in the Somatic Mutation and Recombination Test. We treated third-instar larvae from both crossings with different concentrations of BHc and THc (0.9375 to 7.5 mg/mL). BHc significantly increased the frequency of mutant spots in both crossings, except for the lowest concentration in the ST crossing. ST had also the mostly recombinogenic result, and in the HB, BHc was highly mutagenic. On the other hand, THc significantly increased the frequency of mutant spots in both the ST and HB crossings at all concentrations. The three initial concentrations were recombinogenic and the highest concentration was mutagenic for the THc. BHc and THc at high concentrations were toxic, even though their mutagenicity was not dose-related. THc significantly increased the frequency of mutant spots when metabolized, probably as a result of the production of 1-(3'-chlorophenyl) piperazine. BHc was essentially recombinogenic and when metabolized, it became mutagenic. THc was recombinogenic in both crossings. Further studies are needed to clarify the action mechanisms from BHc and THc.


Assuntos
Antidepressivos/toxicidade , Bupropiona/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Trazodona/toxicidade , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Testes de Mutagenicidade , Mutação , Asas de Animais/efeitos dos fármacos
3.
Chemosphere ; 227: 371-380, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30999177

RESUMO

Neonicotinoids and phenylpyrazoles are classes of neurotoxic insecticides which are able to bind at different ligand sites of neural receptors, leading to the deregulation of insect neural activity and hence resulting in death. The misuse or indiscriminate use of these chemicals is directly associated with several toxicological effects in biota and at different trophic levels. Based on this premise, the aim of the present study was to evaluate and compare the genotoxic capacity of different concentrations of thiamethoxam (TMX), acetamiprid (ACP), imidacloprid (IMI) and fipronil (FP) through the Micronucleus Test in Tradescantia pallida (Trad-MCN). After acclimatization (24 h), T. pallida stems were treated with stablished concentrations of TMX, ACP, IMI and FP for 8 h. Then, the stems of the model organism were submitted to a recovery phase (24 h). The young inflorescences were harvested and fixed in Carnoy solution and, after 24 h, were conserved in ethanol 70% until the analyzes. The obtained anthers were macerated on slides for microscopy, stained with acetic carmine dye and covered with coverslips before analysis by light microscopy. Considering the insecticides, the micronuclei (MN) frequency in plants treated at concentrations of 0.2 and 0.4 g L-1 for TMX, 0.2; 0.4 and 0.8 g L-1 for ACP, 0.1; 0.2; 0.4; 0.8 and 1.6 g L-1 for IMI and 0.2; 0.4; 0.8 and 1.6 g L-1 for FP differed statistically (p < 0.05, Tukey) from the MN frequency of the negative control. All chemicals evaluated revealed genotoxic activity in T. pallida at the highest concentrations.


Assuntos
Inseticidas/toxicidade , Testes para Micronúcleos , Tradescantia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Testes de Mutagenicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Pirazóis
4.
Chemosphere ; 206: 632-642, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778941

RESUMO

Melipona scutellaris Latreille, 1811 (Hymenoptera, Apidae) is a pollinator of various native and cultivated plants. Because of the expansion of agriculture and the need to ensure pest control, the use of insecticides such as fipronil (FP) has increased. This study aimed to evaluate the effects of sublethal doses of FP insecticide on M. scutellaris at different time intervals (6, 12, and 24 h) after exposure, via individually analyzed behavioral biomarkers (locomotor activity, behavioral change) as well as the effect of FP on different brain structures of bees (mushroom bodies, antennal cells, and optic cells), using sub-individual cell biomarkers (heterochromatin dispersion, total nuclear and heterochromatic volume). Forager bees were collected when they were returning to the nest and were exposed to three different concentrations of FP (0.40, 0.040, and 0.0040 ng a.i/bee) by topical application. The results revealed a reduction in the mean velocity, lethargy, motor difficulty, paralysis, and hyperexcitation in all groups of bees treated with FP. A modification of the heterochromatic dispersion pattern and changes in the total volume of the nucleus and heterochromatin were also observed in the mushroom bodies (6, 12, and 24 h of exposure) and antennal lobes (6 and 12 h) of bees exposed to 0.0040 ng a.i/bee (LD50/100). FP is toxic to M. scutellaris and impairs the essential functions required for the foraging activity.


Assuntos
Ecotoxicologia/métodos , Inseticidas/efeitos adversos , Animais , Abelhas , Brasil
5.
Food Chem Toxicol ; 112: 273-281, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29292020

RESUMO

Nanoparticles have been widely used in several sectors and their long-term effect on the body and environment remains unknown. To evaluate the mutagenic, recombinogenic and carcinogenic potential of 11 nm titanium dioxide nanocrystals (TiO2 NCs), the Somatic Mutation and Recombination Test (SMART) and the Test for Detection of Epithelial Tumors Clones (Warts-Wts) were used, both in Drosophila melanogaster. Third-instar larvae (72 + 4 h), obtained in both tests, were treated with different concentrations of TiO2 NCs ranging from 6.25 to 100 mM. Ultrapure water and urethane were used as negative and positive controls, respectively. At ST cross, all concentrations of TiO2 NCs showed a significant increase in the frequencies of mutant spots, demonstrating higher recombination rates. At the HB cross, only the 50 mM concentration showed a negative result. In the Wts Test, all used concentrations were carcinogenic, except for the 100 mM one, which was toxic. No relationship was demonstrated between the used concentrations and the obtained responses. There was no interference of the cytochrome P450 enzyme complex in the induction of mutant spots.


Assuntos
Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Drosophila melanogaster/genética , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos
6.
Chemosphere ; 187: 163-172, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28846972

RESUMO

Thiamethoxam (TMX) belongs to a class of neuro-active insecticides referred as neonicotinoids, while actara® (AC) is one of the most popular TMX-based products in Brazil. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of TMX and AC insecticides. The mutagenic and recombinogenic effect of TMX and AC were evaluated in vivo by the Somatic Mutation and Recombination Test (SMART) while carcinogenic effects were evaluated through the Test for Detection of Epithelial Tumor Clones (wts test), both in somatic cells of Drosophila melanogaster. In the SMART, third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of TMX and AC (2.4; 4.8; 9.7 × 10-4 mM and 1.9 × 10-3 mM). The results revealed mutagenic effects at the highest concentrations tested in the HB cross. In the test for the detection of epithelial tumor, third instar larvae resulting from the cross between wts/TM3, Sb1 virgin females and mwh/mwh males were treated with the same concentrations of TMX and AC used in the SMART. No carcinogenic effect was observed at any of the concentrations tested. In this work, the inhibition of the mechanism of repair by homologous recombination was observed in flies exposed to 9.7 × 10-4 and 1.9 × 10-3 mM of AC. In conclusion, TMX and AC demonstrated to be a promutagen in the highest concentrations tested.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Tiazóis/farmacologia , Animais , Brasil , Carcinogênese/efeitos dos fármacos , Drosophila melanogaster/citologia , Feminino , Inseticidas/farmacologia , Masculino , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Recombinação Genética/efeitos dos fármacos , Tiametoxam
7.
Food Chem Toxicol ; 106(Pt A): 283-291, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28571774

RESUMO

Metformin (MET) is an anti-diabetic drug used to prevent hepatic glucose release and increase tissue insulin sensitivity. Diabetic cancer patients are on additional therapy with anticancer drugs. Doxorubicin (DXR) is a cancer chemotherapeutic agent that interferes with the topoisomerase II enzyme and generates free radicals. MET (2.5, 5, 10, 25 or 50 mM) alone was examined for mutagenicity, recombinogenicity and carcinogenicity, and combined with DXR (0.4 mM) for antimutagenicity, antirecombinogenicity and anticarcinogenicity, using the Somatic Mutation and Recombination Test and the Test for Detecting Epithelial Tumor Clones in Drosophila melanogaster. MET alone did not induce mutation or recombination. Modulating effects of MET on DXR-induced DNA damage were observed at the highest concentrations. In the evaluation of carcinogenesis, MET alone did not induce tumors. When combined with DXR, MET also reduced the DXR-induced tumors at the highest concentrations. Therefore, in the present experimental conditions, MET alone did not present mutagenic/recombinogenic/carcinogenic effects, but it was able to modulate the effect of DXR in the induction of DNA damage and of tumors in D. melanogaster. It is believed that this modulating effect is mainly related to the antioxidant, anti-inflammatory and apoptotic effects of this drug, although such effects have not been directly evaluated.


Assuntos
Doxorrubicina/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Metformina/farmacologia , Mutagênicos/toxicidade , Animais , Carcinogênese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Metformina/administração & dosagem , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Mutação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Recombinação Genética/efeitos dos fármacos
8.
Chemosphere ; 165: 342-351, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664524

RESUMO

Fipronil (FP) is an insecticide that belongs to the phenylpyrazole chemical family and is used to control pests by blocking GABA receptor at the entrance channel of the chlorine neurons. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of FP. The mutagenic and recombinogenic effects were evaluated using the somatic mutation and recombination test (SMART) on wing cells of Drosophila melanogaster. Third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). The results showed mutagenic effects at all concentrations tested in the HB cross; and all concentrations tested in the ST cross, except at concentration of 0.7 × 10-5 mM. The carcinogenic effect of FP was assayed through the test for detection of epithelial tumor (warts) in D. melanogaster. Third instar larvae from wts/TM3 virgin females mated to mwh/mwh males were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). All these concentrations induced a statistically significant increase in tumor frequency. In conclusion, FP proved to be mutagenic, recombinogenic and carcinogenic in somatic cells of D. melanogaster.


Assuntos
Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/toxicidade , Testes de Mutagenicidade/métodos , Neoplasias/induzido quimicamente , Pirazóis/toxicidade , Asas de Animais/patologia , Animais , Feminino , Larva/efeitos dos fármacos , Masculino , Mutagênese , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
9.
Food Chem Toxicol ; 96: 226-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27497765

RESUMO

The main of this study was to evaluate the mutagenic and carcinogenic potential of (+) - usnic acid (UA), using Somatic Mutation and Recombination Test (SMART) and the test for detecting epithelial tumor clones (wts) in Drosophila melanogaster. Larvae from 72 ± 4 h from Drosophila were fed with UA (5.0, 10.0 or 20.0 mM); urethane (10.0 mM) (positive control); and solvent (Milli-Q water, 1% Tween-80 and 3% ethanol) (negative control). ST cross produced increase in total mutant spots in the individuals treated with 5.0, 10.0 or 20.0 mM of UA. HB cross produced spot frequencies in the concentration of 5.0 mM that were higher than the frequency for the same concentration in the ST cross. In the highest concentrations the result was negative, which means that the difference observed can be attributed, in part, to the high levels of P450, suggesting that increasing the metabolic capacity maximized the toxic effect of these doses. In the evaluation of carcinogenesis using the wts test, the results obtained for the same concentrations of UA show a positive result for the presence of tumors when compared to the negative control. We conclude that UA has recombinogenic, mutagenic and carcinogenic effects on somatic cells in D. melanogaster.


Assuntos
Anti-Infecciosos/toxicidade , Benzofuranos/toxicidade , Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Larva/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Drosophila melanogaster/genética , Larva/genética , Mutagênese/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos , Asas de Animais/metabolismo
10.
Food Chem Toxicol ; 84: 55-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26190540

RESUMO

In this study, we evaluated the toxic and genotoxic potential of zinc oxide nanoparticles (ZnO NPs) of 20 nm and the mutagenic potential of these ZnO NPs as well as that of an amorphous ZnO. Toxicity was assessed by XTT colorimetric assay. ZnO NPs were toxic at concentrations equal to or higher than 240.0 µM. Genotoxicity was assessed by in vitro Cytokinesis Block Micronucleus Assay (CBMN) in V79 cells. ZnO NPs were genotoxic at 120.0 µM. The mutagenic potential of amorphous ZnO and the ZnO NPs was assayed using the wing Somatic Mutation and Recombination Test (SMART) of Drosophila melanogaster. In the Standard cross, the amorphous ZnO and ZnO NPs were not mutagenic. Nevertheless, Marker trans-heterozygous individuals from the High bioactivation cross treated with amorphous ZnO (6.25 mM) and ZnO NPs (12.50 mM) displayed a significant increased number of mutant spots when compared with the negative control. In conclusion, the results were not dose related and indicate that only higher concentrations of ZnO NPs were toxic and able to induce genotoxicity in V79 cells. The increase in mutant spots observed in D. melanogaster was generated due to mitotic recombination, rather than mutational events.


Assuntos
Nanopartículas Metálicas/toxicidade , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Animais Geneticamente Modificados , Bioensaio , Linhagem Celular , Cricetulus , Cruzamentos Genéticos , Drosophila melanogaster , Feminino , Marcadores Genéticos/efeitos dos fármacos , Perda de Heterozigosidade/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/ultraestrutura , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/química , Pigmentação/efeitos dos fármacos , Asas de Animais , Óxido de Zinco/química
11.
Food Chem Toxicol ; 55: 645-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23402860

RESUMO

(-)-Cubebin (CUB) is a lignan isolated from dry seeds of Piper cubeba. We aimed to assess its genotoxic potential and influence on chromosomal damage (frequency of micronuclei - MN) induced by doxorubicin (DXR) in V79 cells and by urethane (URE) in somatic Drosophila melanogaster cells. Our findings indicate an absence of a CUB-mediated genotoxic effect at the concentrations tested. The results also revealed that CUB significantly reduced the frequency of MN induced by DXR, with a mean reduction of 63.88%. In a previous study, our research group demonstrated an absence of CUB-mediated mutagenic effects through the wing Somatic Mutation and Recombination Test (SMART) in Drosophila. In the present study, we used the standard and high bioactivation versions of the SMART to estimate the antigenotoxic effects of CUB associated with URE. At lower concentrations, the recombination level decreased, but at the highest concentration, the recombination level increased. Our data and previous studies suggest that CUB may act as a free radical scavenger at low concentrations, a pro-oxidant at higher concentrations when it interacts with the enzymatic system that catalyzes the metabolic detoxification of DXR or URE, and/or an inducer of recombinational DNA repair.


Assuntos
Antimutagênicos/farmacologia , Lignanas/farmacologia , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Animais , Linhagem Celular , Cricetinae , Drosophila melanogaster
12.
Food Chem Toxicol ; 47(7): 1466-72, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19341778

RESUMO

Proanthocyanidins (PAs), also known as condensed tannins, are naturally occurring oligomers and polymers of flavan-3-ol monomer units widely found in the leaves, flowers, fruits, seeds, nuts and barks of many plants. Grape seed proanthocyanidins (GSPs) have been used as nutritional supplements, as antioxidants, in preventing atherosclerosis and cardiovascular diseases, and for dislipidemy treatment. The anthracycline antibiotic adriamycin (Doxorubicin, DXR) is a cancer chemotherapeutic agent that interferes with the topoisomerase II enzyme and generates free radicals. In the present study, GSPs (1.680, 3.375, or 6.750 mg/mL) alone were examined for genotoxicity, and combined with DXR (0.125 mg/mL) for antigenotoxicity, using the standard (ST) and high bioactivation (HB) versions of the wing somatic mutation and recombination test in Drosophila melanogaster. The results observed in both crosses were rather similar. GSPs themselves did not show genotoxicity at the doses used. GSPs suppressed the DNA damage induced by DXR in a dose-dependent manner. Comparison of the frequencies of wing spots in the marker-heterozygous (MH) flies and balancer-heterozygous (BH) flies from both crosses, indicated that induced recombination was the major response for the treatments with DXR alone. The co-treatments demonstrated that GSPs have some anti-mutagenic activity; however, anti-recombinagenic activity was the major response.


Assuntos
Antibióticos Antineoplásicos/antagonistas & inibidores , Antibióticos Antineoplásicos/toxicidade , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/antagonistas & inibidores , Doxorrubicina/toxicidade , Proantocianidinas/farmacologia , Vitis/química , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster , Comportamento Alimentar/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Larva , Testes de Mutagenicidade , Proantocianidinas/química , Sementes/química , Análise de Sobrevida , Asas de Animais/anatomia & histologia
13.
Environ Mol Mutagen ; 48(2): 96-105, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17285639

RESUMO

The Drosophila melanogaster somatic mutation and recombination test (SMART) was used to assess the genotoxicity of surface (S) and bottom (B) water and sediment samples collected from Sites 1 and 2 on the Japaratuba River (Sergipe, Brazil), an area impacted by a petrochemical industrial complex that indirectly discharges treated effluent (produced water) into the river. The genotoxicity tests were performed in standard (ST) cross and high bioactivation (HB) cross flies and were conducted on samples taken in March (dry season) and in July (rainy season) of 2003. Mutant spot frequencies found in treatments with unprocessed water and sediment samples from the test sites were compared with the frequencies observed for similar samples taken from a clean reference site (the Jacarecica River in Sergipe, Brazil) and those of negative (ultrapure water) controls. While samples from the Japaratuba River generally produced greater responses than those from the Jacarecica River, positive responses were detected for both the test and reference site samples. All the water samples collected in March 2003 were genotoxic. In July 2003, the positive responses were restricted to water samples collected from Sites 1 B and 2 S in the ST cross. The genotoxicity of the water samples was due to mitotic recombination, and the samples produced similar genotoxic responses in ST and HB flies. The spot frequencies found in the July water samples were considerably lower than those for the March water samples, suggesting a seasonal effect. The only sediment samples that were genotoxic were from Site 1 (March and July) and from the Jacarecica River (March). The genotoxins in these samples produced both somatic mutation (limited to the Site 1 sample in HB flies) and recombination. The results of this study indicate that samples from both the Japaratuba and Jacarecica Rivers were genotoxic, with the most consistently positive responses detected with Site 1 samples, the site closest to the putative pollution source.


Assuntos
Drosophila/efeitos dos fármacos , Mutagênicos/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Asas de Animais/efeitos dos fármacos , Animais , Brasil , Drosophila/anatomia & histologia , Monitoramento Ambiental/métodos , Poluição Ambiental/efeitos adversos , Testes de Mutagenicidade , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...