Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 37(4): 1095-1101, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33216171

RESUMO

PURPOSE: We aimed at verifying whether resveratrol can decrease cell proliferation and change osteogenic differentiation of cells obtained from patients with type 1 neurofibromatosis (NF1). METHODS: Deciduous dental pulp derived stem cells were isolated from NF1 patient and healthy volunteer. These cells were subjected to increasing concentrations of resveratrol and evaluated for proliferation and mineralization of osteogenic differentiation. RESULTS: The results showed that resveratrol reduced the difference in proliferation between CNT and NF1 cells in a dose-dependent manner and this property was more prominent in affected cells than in healthy cells. Resveratrol showed no statistically significant changes in mineralization in osteogenic differentiation of NF1 cells, at low doses tested. CONCLUSIONS: In conclusion, in a dose-dependent manner, resveratrol displays interesting properties that could be applied in a possible treatment aimed at decreasing cellular proliferation in neurofibromatosis. Furthermore, it is selective concerning healthy cells and not affecting cell differentiation. Further research to cell selectivity, differentiation to other tissue types, and cell cytotoxicity are needed.


Assuntos
Neurofibromatose 1 , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária , Humanos , Neurofibromatose 1/tratamento farmacológico , Resveratrol/farmacologia , Células-Tronco
2.
Biologicals ; 66: 9-16, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32561214

RESUMO

Bone tissue-derive biomaterials have become of great interest to treat diseases of the skeletal system. Biological scaffolds of demineralized and decellularized extracellular matrices (ECM) have been developed and one of these options are ECM hydrogels derived from bovine bone. Nanomaterials may be able to regulate stem cell differentiation due to their unique physical-chemical properties. The present work aimed to evaluate the osteoinductive effects of ECM hydrogels associated with barium titanate nanoparticles (BTNP) on dental pulp cells derived from exfoliated teeth. The addition of BTNP in the ECM derived hydrogel did not affect cell proliferation and the formation of bone nodules. Furthermore, it increased the expression of bone alkaline phosphatase. The results demonstrated that the nanobiocomposites were able to promote the osteogenic differentiation, even in the absence of chemical inducing factors for osteogenic differentiation. In conclusion, bovine bone ECM hydrogel combined with BTNP presented and increased expression of markers of osteogenic differentiation in the absence of chemical inducing factors.


Assuntos
Compostos de Bário/farmacologia , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular , Hidrogéis/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Titânio/farmacologia , Fosfatase Alcalina/efeitos dos fármacos , Fosfatase Alcalina/genética , Animais , Técnica de Desmineralização Óssea , Proteína Morfogenética Óssea 2/efeitos dos fármacos , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/efeitos dos fármacos , Proteína Morfogenética Óssea 4/genética , Bovinos , Polpa Dentária/citologia , Glicosaminoglicanos/metabolismo , Humanos , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Osteogênese/genética , Reologia , Análise Espectral Raman , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais
3.
Heliyon ; 5(4): e01560, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183428

RESUMO

OBJECTIVES: To evaluate the effect of SHED-CM on the proliferation, differentiation, migration ability, cell death, gene expression and production of VEGF of HUVEC in vitro and in a rodent orthotopic dental pulp regeneration. METHODS: Three culture media [M199, DMEM/Ham's F12 and DMEM/Ham's F12 conditioned by SHEDs] were used as experimental groups. SHED-CM was prepared maintaining confluent cells in culture without serum for 3 days. The proliferation and cell death marker of HUVECs were assessed using flow cytometry. The capacity of formation of vascular-like structures was analyzed in cells grown over Matrigel® in hypoxic condition. HUVECs migration was followed using the scratch test. VEGF-A expression in HUVECs was assessed using real time RT-qPCR; and VEGF synthesis with ELISA test. SHED-CM was also applied in rodent ortotopic model of dental pulp regeneration in rats. The formed tissue was submitted to histological and immunohistochemical analyses. RESULTS: SHED-CM promoted significantly lower expression of 7AAD in HUVECs; whereas the expression of the Ki67 was similar in all groups. The vascular-like structures were observed in all groups. Migration of SHED-CM group was faster than DMEM/Ham's F12. SHED-CM induced similar expression of VEGF-A than M199, and higher than DMEM/Ham's F12. SHED-CM induced significantly higher VEGF synthesis than other media. SHED-CM induced formation of a vascularized connective tissue inside the root canal. CONCLUSION: The study showed that SHEDs release angiogenic and cytoprotective factors, which are of great importance for tissue engineering. CLINICAL SIGNIFICANCE: SHED-CM could be an option to the use of stem cells in tissue engineering.

4.
J Biomed Biotechnol ; 2012: 758102, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226945

RESUMO

Stem cells, both embryonic and adult, due to the potential for application in tissue regeneration have been the target of interest to the world scientific community. In fact, stem cells can be considered revolutionary in the field of medicine, especially in the treatment of a wide range of human diseases. However, caution is needed in the clinical application of such cells and this is an issue that demands more studies. This paper will discuss some controversial issues of importance for achieving cell therapy safety and success. Particularly, the following aspects of stem cell biology will be presented: methods for stem cells culture, teratogenic or tumorigenic potential, cellular dose, proliferation, senescence, karyotyping, and immunosuppressive activity.


Assuntos
Medicina de Precisão/métodos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células , Transformação Celular Neoplásica/patologia , Humanos , Células-Tronco/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...