Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677702

RESUMO

The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.


Assuntos
Amônia , Grafite , Lignina , Grafite/química , Lignina/química , Amônia/análise , Amônia/química , Carbono/química , Formaldeído/análise , Formaldeído/química , Técnicas Eletroquímicas/métodos , Poliuretanos/química , Gases/análise , Gases/química , Fenóis , Polímeros
2.
Int J Biol Macromol ; 184: 863-873, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181999

RESUMO

Thermoplastic starch (TPS) is a widely studied biopolymer as an alternative to the use of conventional polymers. In this sense, the incorporation of fillers or reinforcements coming preferably from other substances of natural origin, can be an alternative to try to improve some mechanical and thermal properties of starch polymers. Thus, Kraft Lignin (KL), can be an excellent filler to be incorporated, since it presents mechanical and thermal properties and reduces the cost and weight of the final compounds. TPS films were prepared by casting using dimethyl sulfoxide (DMSO) as solvent and additives with 2, 4 and 8% KL. Characterization of TPS films and compositions with KL were carried out by Fourier-Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), Dynamic Thermomechanical Analysis (DMTA), tensile testing and contact angle. Samples were also analyzed for biodegradation and for the ability to remove contaminants in water, Metil Orange (MO), by Ultraviolet-Visible Spectroscopy (UV-Vis). The FT-IR spectra of the films showed bands typical of functional groups derived from starch and lignin, with the intensity of these bands varying among the samples studied. Micrographs revealed slightly different morphologies among the films, but all showed irregular shapes with structures that appeared as plots. Increasing the percentage of KL led to an increase in contact angle values, showing a more hydrophobic behavior. In the TGA analysis, it was possible to observe a change in the main degradation event of the films for lower temperatures, especially of TPS - 4 and 8% KL compared to the TPS film. Films with KL had the peak of maximum degradation shifted to temperatures below the starch film, where the decrease in intensity of the main peak in the TPS - 4% KL and TPS - 8% KL samples demonstrates that there was less mass loss in the event. There was also in the percentage of residue as the addition of KL was increased The DMTA analyses allowed for the conclusion that presence of KL in TPS film allowed for an increase in its energy storage property, and that the loss modulus followed a decreasing order of storage modulus values to TPS - 8% KL from TPS. For the tensile strength property only TPS - 4% KL has significant improvement, and the elongation at break showed an increase for TPS - 4 and 8% KL compared to TPS. Samples showed a continuous and progressive biodegradation process, being completely biodegraded within 10 days. The monitoring of the ability to remove contaminants from water by UV-Vis, also showed promising results of compounds for this application. The best results were obtained, in most tests, for the TPS- 4% KL films.


Assuntos
Lignina/química , Amido/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA