Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555289

RESUMO

(1) BRAF mutations are associated with high mortality and are a substantial factor in therapeutic decisions. Therapies targeting BRAF-mutated tumors, such as vemurafenib (PLX), have significantly improved the overall survival of melanoma patients. However, patient relapse and low response rates remain challenging, even with contemporary therapeutic alternatives. Highly proliferative tumors often rely on glycolysis to sustain their aggressive phenotype. 3-bromopyruvate (3BP) is a promising glycolysis inhibitor reported to mitigate resistance in tumors. This study aimed to evaluate the potential of 3BP as an antineoplastic agent for PLX-resistant melanoma treatment. (2) The effect of 3BP alone or in combination with PLX on viability, proliferation, colony formation, cell death, migration, invasion, epithelial-mesenchymal marker and metabolic protein expression, extracellular glucose and lactate, and reactive species were evaluated in two PLX-resistant melanoma cell lines. (3) 3BP treatment, which was more effective as monotherapy than combined with PLX, disturbed the metabolic and epithelial-mesenchymal profile of PLX-resistant cells, impairing their proliferation, migration, and invasion and triggering cell death. (4) 3BP monotherapy is a potent metabolic-disrupting agent against PLX-resistant melanomas, supporting the suppression of the malignant phenotype in this type of neoplasia.


Assuntos
Melanoma , Recidiva Local de Neoplasia , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Linhagem Celular Tumoral , Melanoma/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36011823

RESUMO

The intestinal microbiota plays an important role in the immune response against viral infections, modulating both innate and adaptive immune responses. The cytokine storm is associated with COVID-19 severity, and the patient's immune status is influenced by the intestinal microbiota in a gut-lung bidirectional interaction. In this study, we evaluate the intestinal microbiota of Brazilian patients in different post-COVID-19 periods, and correlate this with clinical data and the antibiotic therapy used during the acute phase. DNA extracted from stool samples was sequenced and total anti-SARS-CoV-2 antibodies and C-reactive protein were quantified. Compared with controls, there were significant differences in the microbiota diversity in post-COVID-19 patients, suggesting an intestinal dysbiosis even several months after acute disease resolution. Additionally, we detected some genera possibly associated with the post-COVID-19 dysbiosis, including Desulfovibrio, Haemophillus, Dialister, and Prevotella, in addition to decreased beneficial microbes, associated with antibiotic-induced dysbiosis, such as Bifidobacterium and Akkermansia. Therefore, our hypothesis is that dysbiosis and the indiscriminate use of antibiotics during the pandemic may be associated with post-COVID-19 clinical manifestations. In our study, 39% (n = 58) of patients reported symptoms, including fatigue, dyspnea, myalgia, alopecia, anxiety, memory loss, and depression. These data suggest that microbiota modulation may represent a target for recovery from acute COVID-19 and a therapeutic approach for post-COVID-19 sequelae.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Doença Aguda , Disbiose/microbiologia , Humanos , Pandemias
3.
Front Immunol ; 12: 635471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717181

RESUMO

COVID-19 is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and according to the World Health Organization (WHO), to date, SARS-CoV-2 has already infected more than 91.8 million people worldwide with 1,986,871 deaths. This virus affects mainly the respiratory system, but the gastrointestinal tract (GIT) is also a target, meanwhile SARS-CoV-2 was already detected in oesophagus, stomach, duodenum, rectum, and in fecal samples from COVID-19 patients. Prolonged GIT manifestations in COVID-19, mainly the diarrhea, were correlated with decreased richness and diversity of the gut microbiota, immune deregulation and delayed SARS-CoV-2 clearance. So, the bidirectional interactions between the respiratory mucosa and the gut microbiota, known as gut-lung axis, are supposed to be involved in the healthy or pathologic immune responses to SARS-CoV-2. In accordance, the intestinal dysbiosis is associated with increased mortality in other respiratory infections, due to an exacerbated inflammation and decreased regulatory or anti-inflammatory mechanisms in the lungs and in the gut, pointing to this important relationship between both mucosal compartments. Therefore, since the mucous membranes from the respiratory and gastrointestinal tracts are affected, in addition to dysbiosis and inflammation, it is plausible to assume that adjunctive therapies based on the modulation of the gut microbiota and re-establishment of eubiosis conditions could be an important therapeutic approach for constraining the harmful consequences of COVID-19. Then, in this review, we summarized studies showing the persistence of SARS-CoV-2 in the gastrointestinal system and the related digestive COVID-19 manifestations, in addition to the literature demonstrating nasopharyngeal, pulmonary and intestinal dysbiosis in COVID-19 patients. Lastly, we showed the potential beneficial role of probiotic administration in other respiratory infections, and discuss the possible role of probiotics as an adjunctive therapy in SARS-CoV-2 infection.


Assuntos
COVID-19/microbiologia , Intestinos/microbiologia , Pulmão/microbiologia , SARS-CoV-2/fisiologia , COVID-19/terapia , Disbiose , Microbioma Gastrointestinal , Humanos , Intestinos/virologia , Pulmão/virologia , Probióticos
4.
Front Immunol ; 12: 579140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746942

RESUMO

Hashimoto thyroiditis (HT) is the most common autoimmune disease worldwide, characterized by chronic inflammation and circulating autoantibodies against thyroid peroxidase and thyroglobulin. Patients require hormone replacement with oral levothyroxine, and if untreated, they can develop serious adverse health effects and ultimately death. There is a lot of evidence that the intestinal dysbiosis, bacterial overgrowth, and increased intestinal permeability favor the HT development, and a thyroid-gut axis has been proposed, which seems to impact our entire metabolism. Here, we evaluated alterations in the gut microbiota in Brazilian patients with HT and correlated this data with dietary habits, clinical data, and systemic cytokines and zonulin concentrations. Stool samples from 40 patients with HT and 53 controls were analyzed using real-time PCR, the serum cytokine levels were evaluated by flow cytometry, zonulin concentrations by ELISA, and the dietary habits were recorded by a food frequency questionnaire. We observed a significant increase (p < 0.05) in the Bacteroides species and a decrease in Bifidobacterium in samples of patients with HT. In addition, Lactobacillus species were higher in patients without thyroid hormone replacement, compared with those who use oral levothyroxine. Regarding dietary habits, we demonstrated that there are significant differences in the consumption of vegetables, fruits, animal-derived proteins, dairy products, saturated fats, and carbohydrates between patients and control group, and an inverse correlation between animal-derived protein and Bacteroides genus was detected. The microbiota modulation by diet directly influences the inflammatory profile due to the generated microbiota metabolites and their direct or indirect action on immune cells in the gut mucosa. Although there are no differences in systemic cytokines in our patients with HT, we detected increased zonulin concentrations, suggesting a leaky gut in patients with HT. These findings could help understand the development and progression of HT, while further investigations to clarify the underlying mechanisms of the diet-microbiota-immune system axis are still needed.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Doença de Hashimoto/imunologia , Intestinos/imunologia , Adulto , Bactérias/classificação , Bactérias/genética , Citocinas/sangue , Citocinas/imunologia , Citocinas/metabolismo , Disbiose/microbiologia , Fezes/microbiologia , Comportamento Alimentar , Feminino , Haptoglobinas/imunologia , Haptoglobinas/metabolismo , Doença de Hashimoto/sangue , Doença de Hashimoto/microbiologia , Humanos , Intestinos/microbiologia , Intestinos/fisiologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Precursores de Proteínas/sangue , Precursores de Proteínas/imunologia , Precursores de Proteínas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...