Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38688407

RESUMO

This study investigated the morphology of Rhinella crucifer cutaneous glands, as well as the protein/peptide profiles and bioactivities of body gland secretions (BGS) and parotoid macrogland secretions (PS). The parotoid as well as dorsal and ventral skin fragments of male and female individuals were processed for histological analysis. The protein and peptide profiles of male and female gland secretions were evaluated. Male secretions were also assessed for proteolytic, trypsin inhibiting, hemagglutinating, hemolytic, antimicrobial, and anticoagulant activities. The R. crucifer skin structure presented protuberances that are clearly visible and formed by the integument, which has cutaneous glands throughout the body. An average of 438 and 333 glands were identified in males in females, respectively. No significant differences were observed in the distribution of glands across the body as well as for area and perimeter of glands. Differences were observed in protein composition between the PS and BGS from males and females, and secretions from animals collected from undisturbed and anthropogenically disturbed areas. Proteins with similarities to catalase and elongation factor 1-alpha were detected in the PS. Zymography revealed proteolytic activity in both male BGS and PS. Male BGS showed antibacterial activity against Enterococcus faecalis and Escherichia coli and anticoagulant activity, being able to prolong prothrombin time by 6.34-fold and activated partial thromboplastin time by 2.17-fold. Finally, male PS and BGS caused a maximum hemolysis degree of 1.4%. The data showed that the cutaneous secretions of R. crucifer are potentially promising for biotechnological prospecting.


Assuntos
Bufonidae , Pele , Animais , Masculino , Feminino , Bufonidae/metabolismo , Pele/metabolismo , Pele/química , Glândulas Exócrinas/metabolismo , Secreções Corporais/química , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/farmacologia
2.
Front Mol Biosci ; 9: 824989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813822

RESUMO

Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34868282

RESUMO

The Theraphosidae family includes the largest number of species of the Mygalomorphae infraorder, with hundreds of species currently catalogued. However, there is a huge lack on physiologic and even ecologic information available, especially in Brazil, which is the most biodiverse country in the world. Over the years, spiders have been presented as a source of multiple biologically active compounds with basic roles, such as primary defense against pathogenic microorganisms or modulation of metabolic pathways and as specialized hunters. Spider venoms also evolved in order to enable the capture of prey by interaction with a diversity of molecular targets of interest, raising their pharmaceutical potential for the development of new drugs. Among the activities found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as properties related to proteinase action and neuromuscular blockage modulated by ionic voltage-gated channel interaction. These characteristics are present in different species from multiple genera, which is strong evidence of the important role in spider survival. The present review aims to compile the main results of studies from the last decades on Brazilian Theraphosidae with special focus on results obtained with the crude venom or compounds isolated from both venom and hemocytes, and their physiological and chemical characterization.

4.
J Proteomics ; 237: 104119, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540062

RESUMO

Scorpion venoms are formed by toxins harmful to various organisms, including humans. Several techniques have been developed to understand the role of proteins in animal venoms, including proteomics approach. Rhopalurus agamemnon (Koch, 1839) is the largest scorpion in the Buthidae family in the Brazilian Cerrado, measuring up to 110 mm in total length. The accident with R. agamemnon is painful and causes some systemic reactions, but the specie's venom remains uninvestigated. We explore the venom protein composition using a proteomic and a biological-directed approach identifying 230 protein compounds including enzymes like Hyaluronidase, metalloproteinase, L-amino acid oxidase and amylase, the last two are first reported for scorpion venoms. Some of those new reports are important to demonstrate how distant we are from a total comprehension of the diversity about venoms in general, due to their diversity in composition and function. BIOLOGICAL SIGNIFICANCE: In this study, we explored the composition of venom proteins from the scorpion Rhopalurus agamemnon. We identified 230 proteins from the venom including new enzyme reports. These data highlight the unique diversity of the venom proteins from the scorpion R. agamemnon, provide insights into new mechanisms of envenomation and enlarge the protein database of scorpion venoms. The discovery of new proteins provides a new scenario for the development of new drugs and suggests molecular targets to venom components.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Brasil , Proteoma , Proteômica
5.
Curr Protein Pept Sci ; 18(1): 72-91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27226199

RESUMO

Depsipeptides are a group of biologically active peptides that have at least one of the amide bonds replaced by an ester bond. These peptides sometimes present additional chemical modifications, including unusual amino acid residues in their structures. Depsipeptides are known to exhibit a large array of bioactivities, such as anticancer, antiproliferative, antimicrobial, antiviral and antiplasmodial properties. They are commonly found in marine organisms: bacteria, tunicates, mollusks, sponges, and others. Herein, we summarize the latest insights about marine depsipeptides, their mechanisms of action and potential as therapeutic agents.


Assuntos
Organismos Aquáticos/química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Depsipeptídeos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...