Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 85: 104452, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32634601

RESUMO

Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infection (CA-UTI). The increasing prevalence of CA-UTI caused by UPEC strains resistant to broad-spectrum drugs complicates clinical management of these infections. Here we assessed the prevalence of antimicrobial drug resistance, genotypes and beta-lactamase genes among UPEC isolated from cases of CA-UTI in Rio de Janeiro, Brazil during November 2015 to determine if the prevalence of drug-resistant CA-UTI is determined by multiple genotypes of resistant UPEC or dissemination of key lineages of UPEC. Among 499 UPEC isolates, 98 (20%) were ciprofloxacin (CIP) resistant and 41 (8%) produced extended-spectrum beta-lactamase (ESBL). Sequence types (ST) 69 and 131 were the most common genotypes, representing 77 (15%) and 42 (8%) of all UPEC isolates, respectively. Of fluoroquinolone-resistant isolates, ST69 and ST131 together accounted for 57%, while of ESBL-producers, ST131 represented 21%. Only 5 (2%) of 255 susceptible isolates belonged to these STs (p < .001). blaCTX-M-15 was detected in 17 (42%) of the 41 ESBL-producing isolates. Comparison with a collection of UPEC isolates obtained a decade earlier from the same community showed that a large proportion (60% and 25%, respectively) of the increase in CA-UTI caused by fluoroquinolone-resistant and ESBL-producing UPEC appears to be due to just two pandemic lineages ST131 and ST69. These findings indicate that much of the prevalence of broad-spectrum drug-resistant CA-UTI in Rio de Janeiro is due to a limited set of pandemic lineages of UPEC circulating in the community instead of multiple genotypes selected by antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Infecções Comunitárias Adquiridas/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Cefalosporinas/farmacologia , Criança , Pré-Escolar , Infecções Comunitárias Adquiridas/epidemiologia , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Feminino , Fluoroquinolonas/farmacologia , Genótipo , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Prevalência , Escherichia coli Uropatogênica/isolamento & purificação , Adulto Jovem , beta-Lactamases/genética , beta-Lactamases/metabolismo
2.
Microb Pathog ; 119: 9-11, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604423

RESUMO

Staphylococcus saprophyticus is an important pathogen responsible for community urinary tract infections (UTI). Besides composing the human microbiota, this species is widely distributed in the environment and the origins of this organism for human infection is not fully characterized. Although some virulence determinants are known, such as d-serine deaminase (DsdA), urease and cell-wall associated proteins, few studies investigated the distribution of virulence-associated genes and analyzed the pathogenic potential of S. saprophyticus strains from different sources. The aim of the present study was to detect the presence of S. saprophyticus genes encoding surface proteins UafA, Aas, Ssp, SdrI, SssF as well as the DsdA and urease enzymes. A total of 142 S. saprophyticus strains were obtained from four sources: UTI, colonization, water and food. It was found, in every tested strain, the presence of genes encoding the surface proteins UafA, Aas, Ssp and SssF and the DsdA and urease enzymes. In contrast, the gene encoding SdrI surface protein was not detected in any of the strains of S. saprophyticus. These results provide a better understanding of the characteristics of S. saprophyticus strains and suggest that isolates from non-human sources have a potential to colonize the urinary tract.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus saprophyticus/genética , Staphylococcus saprophyticus/isolamento & purificação , Fatores de Virulência/genética , Brasil , DNA Bacteriano/isolamento & purificação , Feminino , Humanos , Hidroliases/genética , Proteínas de Membrana/genética , Staphylococcus saprophyticus/enzimologia , Staphylococcus saprophyticus/patogenicidade , Urease/genética , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia , Virulência/genética
3.
Int J Microbiol ; 2017: 4287547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28630628

RESUMO

Staphylococcus saprophyticus is an important agent of urinary tract infection (UTI) in young women, but information about this pathogen in human microbiota and in common environment is lacking. The aim of this study was to characterize S. saprophyticus isolates from genitoanal microbiota of 621 pregnant women, 10 minas cheese packs, and five beaches in Rio de Janeiro city and compare PFGE profiles of these isolates with five UTI PFGE clusters described in this city. We investigated 65 S. saprophyticus isolates from microbiota, 13 from minas cheese, and 30 from beaches and 32 UTI isolates. Antimicrobial resistance was determined by disk diffusion, MIC by agar dilution, and PCR. Erythromycin-resistance genes erm(C), msr(A), msr(B), mph(C), and lin(A) were found in 93% of isolates. Trimethoprim-sulfamethoxazole resistance correlated with dfrG or dfrA genes. Three cefoxitin-resistant isolates carried the mecA gene. All isolates obtained from cheese were susceptible to all antimicrobial agents. Six of 10 pregnant women with >1 isolate had monoclonal colonization. Isolates from pregnant women shared 100% similarity with UTI PFGE cluster types A and E obtained almost 10 years previously, suggesting temporal persistence of S. saprophyticus. Antimicrobial resistance of beach isolates reflected the profiles of human isolates. Taken together, results indicate a shared source for human and environmental isolates.

4.
Diagn Microbiol Infect Dis ; 88(1): 69-74, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214224

RESUMO

Escherichia coli clones ST131, ST69, ST95, and ST73 are frequent causes of urinary tract infections (UTI) and bloodstream infections. Specific clones and virulence profiles of E. coli causing UTI in men has been rarely described. The aim of this study was to characterize patient and clonal characteristics of community-acquired UTI caused by E. coli in men (n=12) and women (n=127) in Rio de Janeiro, Brazil, complementing a previous work. We characterized isolates in phylogenetic groups, ERIC2-PCR and PFGE types, MLST, genome similarity and virulence gene-profiles. UTI from men were more frequently caused by phylogenetic group B2 isolates (83% versus 42%, respectively, P = 0.01), a group with significantly higher virulence scores compared with women. ST73 was the predominant clone in men (50%) and the second most frequent in women (12%), with the highest virulence score (mean and median=9) among other clones. ST73 gnomes formed at least six clusters. E. coli from men carried significantly higher numbers of virulence genes, such as sfa/focDE (67% versus 27%), hlyA (58% versus 24%), cnf 1 (58% versus 16%), fyuA (100% versus 82%) and MalX (92% versus 44%), compared with isolates from women. These data suggest the predominance and spread of ST73 isolates likely relates to an abundance of virulence determinants.


Assuntos
Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Brasil/epidemiologia , Eletroforese em Gel de Campo Pulsado , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Genótipo , Humanos , Masculino , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...