Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 86(4): 1448-1462, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33761141

RESUMO

The objective of the present study was to evaluate the effect of probiotic VSL#3 isolated or associated with a yacon-based product (synbiotic) on oxidative stress modulation and intestinal permeability in an experimental model of colorectal carcinogenesis. Forty-five C57BL/6J mice were divided into three groups: control (standard diet AIN-93 M); probiotic (standard diet AIN-93 M and multispecies probiotic VSL#3, 2.25 × 109 CFU), and synbiotic (standard diet AIN-93 M with yacon-based product, 6% fructooligosaccharides and inulin, and probiotic VSL#3, 2.25 × 109 CFU). The experimental diets were provided for 13 weeks. The probiotic and the yacon-based product showed antioxidant activity, with the percentage of DPPH radical scavenging equal to 69.7 ± 0.4% and 74.3 ± 0.1%, respectively. These findings contributed to reduce hepatic oxidative stress: the control group showed higher concentration of malondialdehyde (1.8-fold, p = 0.007 and 1.5-fold, p = 0.035) and carbonylated protein (2-fold, p = 0.008 and 5.6-fold, p = 0.000) compared to the probiotic and synbiotic groups, respectively. Catalase enzyme activity increased 1.43-fold (p = 0.014) in synbiotic group. The crypt depth increased 1.2-fold and 1.4-fold with the use of probiotic and synbiotic, respectively, compared to the control diet (p = 0.000). These findings corroborate the reduction in intestinal permeability in the probiotic and synbiotic groups, as measured by the percentage of urinary lactulose excretion (CON: 0.93 ± 0.62% × PRO: 0.44 ± 0.05%, p = 0.048; and CON: 0.93 ± 0.62% × SYN: 0.41 ± 0.12%, p = 0.043). In conclusion, the probiotic and synbiotic showed antioxidant activity, which contributed to the reduction of oxidative stress markers. In addition, they protected the mucosa from damage caused by chemical carcinogen and reduced intestinal permeability. PRACTICAL APPLICATION: The relationship between intestinal health and the occurrence of various organic disorders has been demonstrated in many studies. The use of probiotics and prebiotics is currently one of the main targets for modulation of intestinal health. We demonstrated that the use of a commercial mix of probiotic bacteria (VSL#3) isolated or associated with a yacon-based prebiotic, rich in fructooligosaccharides and inulin, is able to reduce the oxidative stress and intestinal permeability in a colorectal carcinogenesis model. These compounds have great potential to be used as a food supplement, or as ingredients in the development of food products.


Assuntos
Antioxidantes/farmacologia , Neoplasias Colorretais/prevenção & controle , Intestinos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Probióticos/farmacologia , Simbióticos/administração & dosagem , Animais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade
2.
Crit Rev Food Sci Nutr ; 59(1): 59-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28799785

RESUMO

Colorectal cancer (CRC) is one of the most common cause of cancer death. Phytochemicals, especially anthocyanins/anthocyanidins (A/A), have gathered attention of the scientific community owing to their anti-inflammatory, antioxidant, and cancer-inhibitory properties. In this review, we discussed the possible mechanisms whereby A/A exhibit intestinal anticarcinogenic characteristics. Anthocyanins/anthocyanidins inhibit the pro-inflammatory NF-κB pathway, attenuate Wnt signaling and suppress abnormal epithelial cell proliferation. In addition, A/A induce mitochondrial-mediated apoptosis and downregulate Akt/mTOR (mammalian target of rapamycin) pathway. Furthermore, activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) also contributes to the anti-carcinogenic effects of A/A. Finally, downregulation of metalloproteinases (MMPs) by A/A inhibits tumor invasion and metastasis. In conclusion, A/A exert their anti-tumor effects against colorectal carcinogenesis via multiple mechanisms, providing insights into the use of A/A as a natural chemopreventive intervention on major colorectal carcinogenesis.


Assuntos
Antocianinas/farmacologia , Neoplasias Colorretais/prevenção & controle , Compostos Fitoquímicos/farmacologia , Antocianinas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
Nutrients ; 9(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524086

RESUMO

Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old C57BL/6J female mice were fed a 45% HFD or HFD supplemented with 10% GP. After 7-week dietary supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6, cyclooxygenase-2 (COX-2), IL-17, interferon-γ (IFN-γ), and inducible nitric oxide synthase (iNOS) in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krüppel-like factor 4 (Klf4), and SAM pointed domain ETS factor 1 (Spdef1) in HFD-fed mice. In addition, GP ameliorated endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing α-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice. In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice, which was associated with the suppression of inflammation, mucin depletion, and ER stress in the colon.


Assuntos
Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Dieta Hiperlipídica/efeitos adversos , Dieta , Pisum sativum , Ração Animal , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colite/dietoterapia , Suplementos Nutricionais , Chaperona BiP do Retículo Endoplasmático , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Estresse Oxidativo , Distribuição Aleatória
4.
Clin Microbiol Rev ; 27(3): 482-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24982318

RESUMO

Celiac disease (CD) is a common chronic autoimmune enteropathy caused by gluten intake. To date, the only therapy for CD is the complete exclusion of dietary sources of grains and any food containing gluten. It has been hypothesized that the intestinal microbiota is somehow involved in CD. For this reason, probiotics are appearing as an interesting adjuvant in the dietetic management of CD. This review aims to discuss the characteristics of the microbiota in CD subjects and the use of probiotics as a novel therapy for CD. Comparisons between children with CD and controls show that their microbiota profiles differ; the former have fewer lactobacilli and bifidobacteria. Specific probiotics have been found to digest or alter gluten polypeptides. It has also been demonstrated that some bacterial species belonging to the genera Lactobacillus and Bifidobacterium exert protective properties on epithelial cells from damage caused by gliadin.


Assuntos
Doença Celíaca/microbiologia , Intestinos/microbiologia , Microbiota , Probióticos , Animais , Doença Celíaca/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...