Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085295

RESUMO

Genetic predisposition accounts for nearly 10% of all melanoma cases and has been associated with a dozen moderate- to high-penetrance genes, including CDKN2A, CDK4, POT1 and BAP1. However, in most melanoma-prone families, the genetic etiology of cancer predisposition remains undetermined. The goal of this study was to identify rare genomic variants associated with cutaneous melanoma susceptibility in melanoma-prone families. Whole-exome sequencing was performed in 2 affected individuals of 5 melanoma-prone families negative for mutations in CDKN2A and CDK4, the major cutaneous melanoma risk genes. A total of 288 rare coding variants shared by the affected relatives of each family were identified, including 7 loss-of-function variants. By performing in silico analyses of gene function, biological pathways, and variant pathogenicity prediction, we underscored the putative role of several genes for melanoma risk, including previously described genes such as MYO7A and WRN, as well as new putative candidates, such as SERPINB4, HRNR, and NOP10. In conclusion, our data revealed rare germline variants in melanoma-prone families contributing with a novel set of potential candidate genes to be further investigated in future studies.


Assuntos
Predisposição Genética para Doença/genética , Melanoma/genética , Mutação/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Brasil , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Sequenciamento do Exoma/métodos , Melanoma Maligno Cutâneo
2.
Front Genet ; 12: 617915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613639

RESUMO

Extended phenotypes are manifestations of genes that occur outside of the organism that possess those genes. In spite of their widespread occurrence, the role of extended phenotypes in evolutionary biology is still a matter of debate. Here, we explore the indirect effects of extended phenotypes, especially their shared use, in the fitness of simulated individuals and populations. A computer simulation platform was developed in which different populations were compared regarding their ability to produce, use, and share extended phenotypes. Our results show that populations that produce and share extended phenotypes outrun populations that only produce them. A specific parameter in the simulations, a bonus for sharing extended phenotypes among conspecifics, has a more significant impact in defining which population will prevail. All these findings strongly support the view, postulated by the extended fitness hypothesis (EFH) that extended phenotypes play a significant role at the population level and their shared use increases population fitness. Our simulation platform is available at https://github.com/guilherme-araujo/gsop-dist.

3.
Front Genet ; 11: 548507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193622

RESUMO

Studies on the peopling of South America have been limited by the paucity of sequence data from Native Americans, especially from the east part of the Amazon region. Here, we investigate the whole exome variation from 58 Native American individuals (eight different populations) from the Amazon region and draw insights into the peopling of South America. By using the sequence data generated here together with data from the public domain, we confirmed a strong genetic distinction between Andean and Amazonian populations. By testing distinct demographic models, our analysis supports a scenario of South America occupation that involves migrations along the Pacific and Atlantic coasts. Occupation of the southeast part of South America would involve migrations from the north, rather than from the west of the continent.

4.
Cancer Med ; 9(16): 5948-5959, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592321

RESUMO

Tumor DNA has been detected in body fluids of cancer patients. Somatic tumor mutations are being used as biomarkers in body fluids to monitor chemotherapy response as a minimally invasive tool. In this study, we evaluated the potential of tracking somatic mutations in free DNA of plasma and urine collected from Wilms tumor (WT) patients for monitoring treatment response. Wilms tumor is a pediatric renal tumor resulting from cell differentiation errors during nephrogenesis. Its mutational repertoire is not completely defined. Thus, for identifying somatic mutations from tumor tissue DNA, we screened matched tumor/leukocyte DNAs using either a panel containing 16 WT-associated genes or whole-exome sequencing (WES). The identified somatic tumor mutations were tracked in urine and plasma DNA collected before, during and after treatment. At least one somatic mutation was identified in five out of six WT tissue samples analyzed. Somatic mutations were detected in body fluids before treatment in all five patients (three patients in urine, three in plasma, and one in both body fluids). In all patients, a decrease of the variant allele fraction of somatic mutations was observed in body fluids during neoadjuvant chemotherapy. Interestingly, the persistence of somatic mutations in body fluids was in accordance with clinical parameters. For one patient who progressed to death, it persisted in high levels in serial body fluid samples during treatment. For three patients without disease progression, somatic mutations were not consistently detected in samples throughout monitoring. For one patient with bilateral disease, a somatic mutation was detected at low levels with no support of clinical manifestation. Our results demonstrated the potential of tracking somatic mutations in urine and plasma DNA as a minimally invasive tool for monitoring WT patients. Additional investigation is needed to check the clinical value of insistent somatic mutations in body fluids.


Assuntos
DNA de Neoplasias/genética , Neoplasias Renais/genética , Mutação , Tumor de Wilms/genética , Alelos , Quimioterapia Adjuvante , Pré-Escolar , DNA de Neoplasias/sangue , DNA de Neoplasias/urina , Feminino , Humanos , Lactente , Neoplasias Renais/sangue , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/urina , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Terapia Neoadjuvante , Sequenciamento do Exoma , Tumor de Wilms/sangue , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/urina
5.
BMC Med Genomics ; 13(1): 30, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087727

RESUMO

BACKGROUND: Cancer neoantigens have attracted great interest in immunotherapy due to their capacity to elicit antitumoral responses. These molecules arise from somatic mutations in cancer cells, resulting in alterations on the original protein. Neoantigens identification remains a challenging task due largely to a high rate of false-positives. RESULTS: We have developed an efficient and automated pipeline for the identification of potential neoantigens. neoANT-HILL integrates several immunogenomic analyses to improve neoantigen detection from Next Generation Sequence (NGS) data. The pipeline has been compiled in a pre-built Docker image such that minimal computational background is required for download and setup. NeoANT-HILL was applied in The Cancer Genome Atlas (TCGA) melanoma dataset and found several putative neoantigens including ones derived from the recurrent RAC1:P29S and SERPINB3:E250K mutations. neoANT-HILL was also used to identify potential neoantigens in RNA-Seq data with a high sensitivity and specificity. CONCLUSION: neoANT-HILL is a user-friendly tool with a graphical interface that performs neoantigens prediction efficiently. neoANT-HILL is able to process multiple samples, provides several binding predictors, enables quantification of tumor-infiltrating immune cells and considers RNA-Seq data for identifying potential neoantigens. The software is available through github at https://github.com/neoanthill/neoANT-HILL.


Assuntos
Antígenos de Neoplasias , Bases de Dados Genéticas , Melanoma , RNA-Seq , Software , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Humanos , Melanoma/genética , Melanoma/imunologia
6.
Gene ; 726: 144168, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31759986

RESUMO

Methods based around statistics and linear algebra have been increasingly used in attempts to address emerging questions in microarray literature. Microarray technology is a long-used tool in the global analysis of gene expression, allowing for the simultaneous investigation of hundreds or thousands of genes in a sample. It is characterized by a low sample size and a large feature number created a non-square matrix, and by the incomplete rank, that can generate countless more solution in classifiers. To avoid the problem of the 'curse of dimensionality' many authors have performed feature selection or reduced the size of data matrix. In this work, we introduce a new logistic regression-based model to classify breast cancer tumor samples based on microarray expression data, including all features of gene expression and without reducing the microarray data matrix. If the user still deems it necessary to perform feature reduction, it can be done after the application of the methodology, still maintaining a good classification. This methodology allowed the correct classification of breast cancer sample data sets from Gene Expression Omnibus (GEO) data series GSE65194, GSE20711, and GSE25055, which contain the microarray data of said breast cancer samples. Classification had a minimum performance of 80% (sensitivity and specificity), and explored all possible data combinations, including breast cancer subtypes. This methodology highlighted genes not yet studied in breast cancer, some of which have been observed in Gene Regulatory Networks (GRNs). In this work we examine the patterns and features of a GRN composed of transcription factors (TFs) in MCF-7 breast cancer cell lines, providing valuable information regarding breast cancer. In particular, some genes whose αi ∗ associated parameter values revealed extreme positive and negative values, and, as such, can be identified as breast cancer prediction genes. We indicate that the PKN2, MKL1, MED23, CUL5 and GLI genes demonstrate a tumor suppressor profile, and that the MTR, ITGA2B, TELO2, MRPL9, MTTL1, WIPI1, KLHL20, PI4KB, FOLR1 and SHC1 genes demonstrate an oncogenic profile. We propose that these may serve as potential breast cancer prediction genes, and should be prioritized for further clinical studies on breast cancer. This new model allows for the assignment of values to the αi ∗ parameters associated with gene expression. It was noted that some αi ∗ parameters are associated with genes previously described as breast cancer biomarkers, as well as other genes not yet studied in relation to this disease.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Modelos Logísticos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 116(35): 17377-17382, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31409704

RESUMO

Gross Chromosomal Rearrangements (GCRs) play an important role in human diseases, including cancer. Although most of the nonessential Genome Instability Suppressing (GIS) genes in Saccharomyces cerevisiae are known, the essential genes in which mutations can cause increased GCR rates are not well understood. Here 2 S. cerevisiae GCR assays were used to screen a targeted collection of temperature-sensitive mutants to identify mutations that caused increased GCR rates. This identified 94 essential GIS (eGIS) genes in which mutations cause increased GCR rates and 38 candidate eGIS genes that encode eGIS1 protein-interacting or family member proteins. Analysis of TCGA data using the human genes predicted to encode the proteins and protein complexes implicated by the S. cerevisiae eGIS genes revealed a significant enrichment of mutations affecting predicted human eGIS genes in 10 of the 16 cancers analyzed.


Assuntos
Genes Supressores , Genoma Fúngico , Instabilidade Genômica , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Supressoras de Tumor/genética , Dano ao DNA , Humanos , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Front Oncol ; 8: 306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148116

RESUMO

Background: The observation of tumor-derived cell-free DNA (ctDNA) in plasma brought new expectations to monitor treatment response in cancer patients. Case presentation: In an exploratory case of a 57-year-old man diagnosed with metastatic sigmoid adenocarcinoma, we used a hotspot panel of cancer-associated gene mutations to identify tumor-specific mutations in the primary tumor and metastasis. RESULTS: Five mutations were detected (KRAS, p.Gly12Val; TP53, p.Arg175His; RB1, p.Ile680Thr; ALK, p.Gly1184Glu; and ERBB2, p.Lys860Lys), of which three were detected in both tissue types (primary tumor and metastasis). All five mutations were monitored in the ctDNA of six serial plasma samples. Only KRAS and TP53 mutations were detected at a high frequency in the first plasma sample. After 1 month of chemotherapy the allele frequencies of both mutations fell below the detection limit. From the third month of systemic treatment onward, the allele frequencies of both mutations were detectable in plasma, displaying a continual increase thereafter. The remaining three mutations were not detected in plasma samples. Signs of disease progression in ctDNA during the treatment period were evident while computed tomography (CT) measurements suggested stable metastatic lesions throughout the treatment. Conclusions: Liquid biopsies revealed tumor heterogeneity and predicted tumor progression, demonstrating the potential of ctDNA analysis to be a sensitive and specific tool for monitoring treatment responsivity and for early identification of treatment resistance.

9.
Front Genet ; 9: 161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868112

RESUMO

Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1. For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4) and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.

10.
Cell Cycle ; 15(17): 2346-59, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27399331

RESUMO

The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.


Assuntos
Linfócitos B/metabolismo , Ciclo Celular , Fatores de Transcrição NFATC/metabolismo , Animais , Células CHO , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Cricetinae , Cricetulus , Ciclina E , Humanos , Células Jurkat , Linfoma de Células B/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas/genética
11.
Nat Commun ; 7: 11256, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071721

RESUMO

Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes.


Assuntos
Rearranjo Gênico/genética , Redes Reguladoras de Genes , Genoma Fúngico , Neoplasias/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Genes Fúngicos , Instabilidade Genômica , Humanos , Mutação/genética
12.
Int J Genomics ; 2016: 8346198, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28097125

RESUMO

It is estimated that 10 to 20% of all genes in the human genome encode cell surface proteins and due to their subcellular localization these proteins represent excellent targets for cancer diagnosis and therapeutics. Therefore, a precise characterization of the surfaceome set in different types of tumor is needed. Using TCGA data from 15 different tumor types and a new method to identify cancer genes, the S-score, we identified several potential therapeutic targets within the surfaceome set. This allowed us to expand a previous analysis from us and provided a clear characterization of the human surfaceome in the tumor landscape. Moreover, we present evidence that a three-gene set-WNT5A, CNGA2, and IGSF9B-can be used as a signature associated with shorter survival in breast cancer patients. The data made available here will help the community to develop more efficient diagnostic and therapeutic tools for a variety of tumor types.

13.
PeerJ ; 3: e1419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618088

RESUMO

Motivation. Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many different samples need to be compared. Some popular tools for the analysis of ASEs are known to report thousands of events without annotations and/or graphical representations. A new tool for the identification and visualization of ASEs is here described, which can be used by biologists without a solid bioinformatics background. Results. A software suite named Splicing Express was created to perform ASEs analysis from transcriptome sequencing data derived from next-generation DNA sequencing platforms. Its major goal is to serve the needs of biomedical researchers who do not have bioinformatics skills. Splicing Express performs automatic annotation of transcriptome data (GTF files) using gene coordinates available from the UCSC genome browser and allows the analysis of data from all available species. The identification of ASEs is done by a known algorithm previously implemented in another tool named Splooce. As a final result, Splicing Express creates a set of HTML files composed of graphics and tables designed to describe the expression profile of ASEs among all analyzed samples. By using RNA-Seq data from the Illumina Human Body Map and the Rat Body Map, we show that Splicing Express is able to perform all tasks in a straightforward way, identifying well-known specific events. Availability and Implementation. Splicing Express is written in Perl and is suitable to run only in UNIX-like systems. More details can be found at: http://www.bioinformatics-brazil.org/splicingexpress.

14.
BMC Genomics ; 16: 536, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194008

RESUMO

BACKGROUND: Differences in gene expression have a significant role in the diversity of phenotypes in humans. Here we integrated human public data from ENCODE, 1000 Genomes and Geuvadis to explore the populational landscape of INDELs affecting transcription factor-binding sites (TFBS). A significant fraction of TFBS close to the transcription start site of known genes is affected by INDELs with a consequent effect at the expression of the associated gene. RESULTS: Hundreds of TFBS-affecting INDELs (TFBS-ID) show a differential frequency between human populations, suggesting a role of natural selection in the spread of such variant INDELs. A comparison with a dataset of known human genomic regions under natural selection allowed us to identify several cases of TFBS-ID likely involved in populational adaptations. Ontology analyses on the differential TFBS-ID further indicated several biological processes under natural selection in different populations. CONCLUSION: Together, our results strongly suggest that INDELs have an important role in modulating gene expression patterns in humans. The dataset we make available, together with other data reporting variability at both regulatory and coding regions of genes, represent a powerful tool for studies aiming to better understand the evolution of gene regulatory networks in humans.


Assuntos
Sítios de Ligação/genética , Genoma Humano , Mutação INDEL/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Sítio de Iniciação de Transcrição
15.
Cancer Inform ; 14(Suppl 5): 139-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27158220

RESUMO

Cancer cells have anomalous development and proliferation due to disturbances in their control systems. The study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. This fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profile and the signaling pathways. This article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verified the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. These differentially represented motifs are enriched with specific gene ontologies as well as with new putative cancer genes.

16.
PeerJ ; 2: e673, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405079

RESUMO

Integration of transcriptome data is a crucial step for the identification of rare protein variants in mass-spectrometry (MS) data with important consequences for all branches of biotechnology research. Here, we used Splooce, a database of splicing variants recently developed by us, to search MS data derived from a variety of human tumor cell lines. More than 800 new protein variants were identified whose corresponding MS spectra were specific to protein entries from Splooce. Although the types of splicing variants (exon skipping, alternative splice sites and intron retention) were found at the same frequency as in the transcriptome, we observed a large variety of modifications at the protein level induced by alternative splicing events. Surprisingly, we found that 40% of all protein modifications induced by alternative splicing led to the use of alternative translation initiation sites. Other modifications include frameshifts in the open reading frame and inclusion or deletion of peptide sequences. To make the dataset generated here available to the community in a more effective form, the Splooce portal (http://www.bioinformatics-brazil.org/splooce) was modified to report the alternative splicing events supported by MS data.

17.
PLoS One ; 9(4): e94147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710071

RESUMO

A new method, which allows for the identification and prioritization of predicted cancer genes for future analysis, is presented. This method generates a gene-specific score called the "S-Score" by incorporating data from different types of analysis including mutation screening, methylation status, copy-number variation and expression profiling. The method was applied to the data from The Cancer Genome Atlas and allowed the identification of known and potentially new oncogenes and tumor suppressors associated with different clinical features including shortest term of survival in ovarian cancer patients and hormonal subtypes in breast cancer patients. Furthermore, for the first time a genome-wide search for genes that behave as oncogenes and tumor suppressors in different tumor types was performed. We envisage that the S-score can be used as a standard method for the identification and prioritization of cancer genes for follow-up studies.


Assuntos
Biologia Computacional/métodos , Genes Neoplásicos/genética , Neoplasias/genética , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genômica , Humanos , Metilação , Mutação/genética , Oncogenes/genética
18.
J Mol Evol ; 76(4): 228-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23529588

RESUMO

Despite evidence that at the interspecific scale, exonic splicing silencers (ESSs) are under negative selection in constitutive exons, little is known about the effects of slightly deleterious polymorphisms on these splicing regulators. Through the application of a modified version of the McDonald-Kreitman test, we compared the normalized proportions of human polymorphisms and human/rhesus substitutions affecting exonic splicing regulators (ESRs) on sequences of constitutive and alternative exons. Our results show a depletion of substitutions and an enrichment of SNPs associated with ESS gain in constitutive exons. Moreover, we show that this evolutionary pattern is also present in a set of ESRs previously involved in the transition from constitutive to skipped exons in the mammalian lineage. The similarity between these two sets of ESRs suggests that the transition from constitutive to skipped exons in mammals is more frequently associated with the inhibition than with the promotion of splicing signals. This is in accordance with the hypothesis of a constitutive origin of exon skipping and corroborates previous findings about the antagonistic role of certain exonic splicing enhancers.


Assuntos
Evolução Biológica , Éxons , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Sequências Reguladoras de Ácido Nucleico , Seleção Genética , Animais , Elementos Facilitadores Genéticos , Humanos , Mamíferos/genética , Modelos Genéticos
19.
PLoS Genet ; 9(1): e1003242, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359205

RESUMO

The era of whole-genome sequencing has revealed that gene copy-number changes caused by duplication and deletion events have important evolutionary, functional, and phenotypic consequences. Recent studies have therefore focused on revealing the extent of variation in copy-number within natural populations of humans and other species. These studies have found a large number of copy-number variants (CNVs) in humans, many of which have been shown to have clinical or evolutionary importance. For the most part, these studies have failed to detect an important class of gene copy-number polymorphism: gene duplications caused by retrotransposition, which result in a new intron-less copy of the parental gene being inserted into a random location in the genome. Here we describe a computational approach leveraging next-generation sequence data to detect gene copy-number variants caused by retrotransposition (retroCNVs), and we report the first genome-wide analysis of these variants in humans. We find that retroCNVs account for a substantial fraction of gene copy-number differences between any two individuals. Moreover, we show that these variants may often result in expressed chimeric transcripts, underscoring their potential for the evolution of novel gene functions. By locating the insertion sites of these duplicates, we are able to show that retroCNVs have had an important role in recent human adaptation, and we also uncover evidence that positive selection may currently be driving multiple retroCNVs toward fixation. Together these findings imply that retroCNVs are an especially important class of polymorphism, and that future studies of copy-number variation should search for these variants in order to illuminate their potential evolutionary and functional relevance.


Assuntos
Biologia Computacional/métodos , Variações do Número de Cópias de DNA/genética , Duplicação Gênica , Retroelementos/genética , Sequência de Bases , Evolução Biológica , Mapeamento Cromossômico , Humanos , Íntrons , Fenótipo , Análise de Sequência de DNA , Deleção de Sequência
20.
PLoS One ; 8(12): e83340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386182

RESUMO

The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Indígenas Sul-Americanos/genética , Análise por Conglomerados , DNA Mitocondrial , Ligação Genética , Genética Populacional , Humanos , Mutação INDEL , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Grupos Populacionais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...