Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(21): 215701, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883140

RESUMO

Glassy carbon is a technologically important material with isotropic properties that is nongraphitizing up to ∼3000 °C and displays complete or "superelastic" recovery from large compression. The pressure limit of these properties is not yet known. Here we use experiments and modeling to show permanent densification, and preferred orientation occurs in glassy carbon loaded to 45 GPa and above, where 45 GPa represents the limit to the superelastic and nongraphitizing properties of the material. The changes are explained by a transformation from its sp^{2} rich starting structure to a sp^{3} rich phase that reverts to fully sp^{2} bonded oriented graphite during pressure release.

2.
Proc Math Phys Eng Sci ; 470(2169): 20140371, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25197256

RESUMO

The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon-phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23410281

RESUMO

We apply a unified and trade-off based optimization for low-dissipation models of cyclic heat devices which accounts for both useful energy and losses. The resulting performance regime lies between those of maximum first-law efficiency and maximum χ (a unified figure of merit corresponding to power output of heat engines). The bounds available for both symmetric and extremely asymmetric heat devices are explicitly obtained. The similarities for heat engines and refrigerators and the energetic advantages of the trade-off optimization are especially stressed.


Assuntos
Transferência de Energia , Calefação , Modelos Teóricos , Condutividade Térmica , Simulação por Computador , Termodinâmica
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 1): 010104, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22400500

RESUMO

A unified optimization criterion for Carnot engines and refrigerators is proposed. It consists of maximizing the product of the heat absorbed by the working system times the efficiency per unit time of the device, either the engine or the refrigerator. This criterion can be applied to both low symmetric dissipation Carnot engines and refrigerators. For engines the criterion coincides with the maximum power criterion and then the Curzon-Ahlborn efficiency η(CA)=1-√T(c)/T(h) is recovered, where T(h) and T(c) are the temperatures of the hot and cold reservoirs, respectively [Esposito, Kawai, Lindenberg, and Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. For refrigerators the criterion provides the counterpart of Curzon-Ahlborn efficiency for refrigerators ε(CA)=[1/(√1-(T(c)/T(h))]-1, first derived by Yan and Chen for the particular case of an endoreversible Carnot-type refrigerator with linear (Newtonian) finite heat transfer laws [Yan and Chen, J. Phys. D: Appl. Phys. 23, 136 (1990)].


Assuntos
Transferência de Energia , Modelos Químicos , Termodinâmica , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...